

Maximising the value of your data – multivariate analysis

Consequences and opportunities of breakthrough in scientific understanding

Ralf Marbach VTT Optical Instrument Center, www.vtt.fi/oic ralf.marbach@vtt.fi, Ph. +358 40 770 8375

Heidelberg PAT Conference, 24-26 Oct 2007

VTT Optical Instruments Center

- VTT = Finland's main R&D service provider
 - Approx. 2,800 staff ; multidisciplinary
- OIC = One of 45 knowledge centres; optical measurement technology for industrial applications
- 50+ staff of which about 50% on PAT
- 20+ years of R&D and Engineering in optical instruments; focus on *on-line* applications

• Expertise

- Spectroscopy and machine vision
- Optics, electronics, high precision mechanics, software, embedded software, system engineering, optoelectronic components, packaging, digital signal processing, wireless communication, low cost manufacturing techniques, calibration, various aspects of applied physics and chemistry, ...
- Independent organization, serving both instrument suppliers and end-users

Two Messages ...

The good news:

- The advantages of "science-based" calibration (SBC)
- Three insights (break-aways from traditional thinking) necessary for scientific understanding
 - Multivariate calibration as simple as intuitive as univariate

The other news:

- *The "ugly" side* of the scientific understanding provided by SBC
 - Exact definitions of SPECIFICITY ("Selectivity") and SENSITIVITY now available in multivariate case
 - How the *existing* methods of calibration are affected
 - **Purpose:** Initiate discussion in the user community

History & Status of "Chemometrics"

- "Classical" (or "physical" or "K-matrix") calibration
- Simple cases only

- "Statistical" (or "inverse" or "P-matrix") calibration
- Widely applied (PLS, PCR ...)

SBC (2/2) – Optimal solution (for measuring g in Σ)

$$\mathbf{b}_{opt} = \frac{\boldsymbol{\Sigma}^{-} \mathbf{g}}{\mathbf{g}^{T} \boldsymbol{\Sigma}^{-} \mathbf{g}} [(\text{mol/L}) / \text{AU}] \quad \text{cmp. Ref.}$$

Prediction:
$$\hat{y}_{pred}(t) = \left[y(t) \cdot \mathbf{g}^T + \mathbf{x}_n^T(t)\right] \cdot \frac{\Sigma^{-} \mathbf{g}}{\mathbf{g}^T \Sigma^{-} \mathbf{g}} = y(t) + \frac{\mathbf{x}_n^T(t) \cdot \Sigma^{-} \mathbf{g}}{\mathbf{g}^T \Sigma^{-} \mathbf{g}}$$

Best possible SEP_{opt} "prediction" error: **Multivariate Limit of Sensitivity**

Heidelberg PAT Conference, 24-26 Oct 2007

 Σ^{-}

·g

[mol/L] RMS

1

SBC Advantages

- Spectrometry becomes "primary" method
 - Need for lab-reference values virtually eliminated (\$\$)
 - Need for "designer samples" eliminated, i.e. stable industrial processes with minimal amount of analyte variation can also be calibrated (\$\$)
 - Development of new, application-specific analyzers much faster, less risky because hardware spec's can be derived in advance (\$\$)
 - Specificity of response can be proven (!)
 - Improved possibilities for calibration transfer
 - Improved possibilities for dealing with non-linearities, instationarities
 - Calibration process transparent and communicate-able ("science-based")

Chambersburg *Shoot-out 2002* Example – API in tablets

- 655 tablets (155 cal, 460 test, 40 val)
- NIR diffuse transmittance
- Foss NIRSystems Multitab Analyzer (2 units)
- data provided courtesy of Purdue Pharma L.P and Gary Ritchie
- data available at <u>www.idrc-</u> <u>chambersburg.org/shootout</u> <u>2002.htm</u>
- G.E. Ritchie; R.W. Roller; E.W. Ciurczak; H. Mark; C. Tso; S.A. MacDonald, Validation of a near-infrared transmission spectroscopic procedure - Part B: Application to alternate content uniformity and release assay methods for pharmaceutical solid dosage form, J. Pharm. Biomed. Anal. 29, 159-171 (2002)

Shoot-out 2002 Example – Lab-reference values

Shoot-out 2002 Example – API response spectrum

Shoot-out 2002 Example – API response spectrum (cont'd)

Shoot-out 2002 Example – Prediction results

Second mental leap - All calibrations can be written in this form

$$\mathbf{b}_c = \frac{\boldsymbol{\Sigma}_c^{-} \mathbf{g}_c}{\mathbf{g}_c^{T} \boldsymbol{\Sigma}_c^{-} \mathbf{g}_c}$$

- "Űber formula" multivariate or univariate, classical or inverse
- SBC brings common language to **all** methods
- Something is always used as signal
- **Something** is always used as noise

Example 1 – "Classical" calibration

Model ("K-matrix"):

$$\mathbf{x}_{pred} = \begin{bmatrix} \mathbf{g} & \mathbf{K} \end{bmatrix} \cdot \begin{bmatrix} y \\ \mathbf{c} \end{bmatrix} + \mathbf{r} \qquad [AU]$$

Equivalent b-vector:

$$y_{pred} = \left(\begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} \cdot \left\{ \begin{bmatrix} \mathbf{g}^T \\ \mathbf{K}^T \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g} & \mathbf{K} \end{bmatrix} \right\}^{-1} \begin{bmatrix} \mathbf{g}^T \\ \mathbf{K}^T \end{bmatrix} \right) \cdot \mathbf{x}_{pred} = \mathbf{b}_{eq}^T \cdot \mathbf{x}_{pred}$$

$$\mathbf{p}_{eq} = \frac{\left(\mathbf{I} - \mathbf{K}(\mathbf{K}^T \mathbf{K})^{-1} \mathbf{K}^T\right) \cdot \mathbf{g}}{\mathbf{g}^T \cdot \left(\mathbf{I} - \mathbf{K}(\mathbf{K}^T \mathbf{K})^{-1} \mathbf{K}^T\right) \cdot \mathbf{g}} \quad [(\text{mol/L}) / \text{AU}] \quad \text{``Net analyte signal''}$$

- Good estimate of the spectral signal, g
- Bad estimate of the spectral noise, Σ

VTT

Heidelberg PAT Conference, 24-26 Oct 2007

Inverse model: $\mathbf{y}_R = \mathbf{X} \cdot \mathbf{b} + \mathbf{e}$ [mg]

b-vector:

$$\mathbf{b} = \left(\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}}\right)^{-PLS/PCR} \widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{y}}_{R}$$

$$= \frac{\left\{\widetilde{\mathbf{X}}^{T} \left(\mathbf{I} - \frac{\widetilde{\mathbf{y}}_{R} \cdot \widetilde{\mathbf{y}}_{R}^{T}}{\widetilde{\mathbf{y}}_{R}}\right) \widetilde{\mathbf{X}}\right\}^{-PLS/PCR} \left(\frac{\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{y}}_{R}}{\widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right) \cdot \widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}$$

$$= \frac{\left\{\widetilde{\mathbf{X}}^{T} \left(\mathbf{I} - \frac{\widetilde{\mathbf{y}}_{R} \cdot \widetilde{\mathbf{y}}_{R}}{\widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right) \widetilde{\mathbf{X}}\right\}^{-PLS/PCR} \left(\frac{\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{y}}_{R}}{\widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right) \cdot \widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}$$

$$= \frac{\left\{\widetilde{\mathbf{X}}^{T} \left(\mathbf{I} - \frac{\widetilde{\mathbf{y}}_{R} \cdot \widetilde{\mathbf{y}}_{R}}{\widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right) \cdot \widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right\}^{-PLS/PCR} \left(\frac{\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{y}}_{R}}{\widetilde{\mathbf{y}}_{R}^{T} \widetilde{\mathbf{y}}_{R}}\right)$$

• Unreliable and expensive estimate of **g**; often haunted by spurious & unspecific correlations

Details see Ref. 2

• Good estimate of **Σ**, but expensive

Heidelberg PAT Conference, 24-26 Oct 2007

Everything that correlates

Example 3 – Simple two-wavelength calibration

"Analytical" absorbance band:

Signal:
$$\mathbf{g}_c = \begin{pmatrix} g \\ 0 \end{pmatrix}$$
 [AU / (mol/L)]
Noise: $\boldsymbol{\Sigma}_c = \sigma_x^2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ [AU²]

$$\mathbf{b}_{c} = \frac{\boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}}{\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}} = \frac{1}{g} \begin{pmatrix} +1 \\ -1 \end{pmatrix} \qquad [(\text{mol/L}) / \text{AU}]$$

Example 4 – Univariate Case

[AU²]

Signal:
$$\mathbf{g}_c = g$$
 [AU / (mol/L)]

Noise: $\Sigma_c = \sigma_x^2$

$$\mathbf{b}_{c} = \frac{\boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}}{\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}} = \frac{1}{g} \qquad [(\text{mol/L}) / \text{AU}]$$

Third mental leap – Time (a.k.a. frequency) axis is **important**

Measured

"Spurious" vs. "unspecific" correlations

- **Spurious correlations** appear only in "statistical" calibration (PLS, PCR)
 - Caused by random fluctuations in calibration data set. Disappear with increasing number of calibration standards. Can be bad ...

T. Fearn, *Valid validation*, in: Proc. 12th Int'l Conf. on Near Infrared Spectroscopy, Auckland, New Zealand, 9 – 15 April 2005, G.R. Burling-Claridge, S.E. Holroyd and R.M.W. Sumner (eds.), 283 - 284

19/51

• ... but are only the tip of the iceberg.

The REAL problem are *unspecific* correlations -- chemically unspecific but statistically reproducible. *All* methods of calibration can be affected ("statistical", "classical", and SBC).

Heidelberg PAT Conference, 24-26 Oct 2007

Unspecific correlation – Example

- Measurement of **cholesterol in human blood** (e.g., IR spectrometry)
- Cholesterol (analyte) and triglycerides (interferent), $r \approx 0.5$

$$y_{trig}(t) = S \cdot r \cdot y_{chol}(t) + \left(y_{trig}(t) - S \cdot r \cdot y_{chol}(t)\right) \quad \text{where} \quad S = \sigma_{trig} / \sigma_{chol}$$

• Measured spectrum:

$$\mathbf{x}^{T}(t) = y_{chol}(t) \cdot \mathbf{g}_{chol}^{T} + y_{trig}(t) \cdot \mathbf{k}_{trig}^{T} + \mathbf{x}_{n, all but trig}^{T}(t)$$

$$= y_{chol}(t) \cdot \mathbf{g}_{chol}^{T} + \left\{ S \cdot r \cdot y_{chol}(t) + \left(y_{trig}(t) - S \cdot r \cdot y_{chol}(t) \right) \right\} \cdot \mathbf{k}_{trig}^{T} + \mathbf{x}_{n, all but trig}^{T}(t)$$

$$= y_{chol}(t) \cdot \mathbf{g}_{chol}^{T} + S \cdot r \cdot y_{chol}(t) \cdot \mathbf{k}_{trig}^{T} + \mathbf{x}_{n}^{T}(t)$$

$$UC$$
Heideberg PAT Conference, 24-26 Oct 2007

Unspecific correlation – Example cont'd

• Prediction:

$$\hat{y}_{chol}(t) = \mathbf{x}^{T}(t) \cdot \mathbf{b}_{c}$$

$$= \left(y_{chol}(t) \cdot \mathbf{g}_{chol}^{T} + S \cdot r \cdot y_{chol}(t) \cdot \mathbf{k}_{trig}^{T} + \mathbf{x}_{n}^{T}(t) \right) \cdot \frac{\sum_{c}^{-} \mathbf{g}_{chol}}{\mathbf{g}_{chol}^{T} \sum_{c}^{-} \mathbf{g}_{chol}}$$

$$= y_{chol}(t) \left(1 + S \cdot r \cdot \frac{\mathbf{k}_{trig}^{T} \sum_{c}^{-} \mathbf{g}_{chol}}{\mathbf{g}_{chol}^{T} \sum_{c}^{-} \mathbf{g}_{chol}} \right) + \frac{\mathbf{x}_{n}^{T}(t) \sum_{c}^{-} \mathbf{g}_{chol}}{\mathbf{g}_{chol}^{T} \sum_{c}^{-} \mathbf{g}_{chol}}$$

$$Specificity (slope) \qquad Sensitivity (scatter)$$

Heidelberg PAT Conference, 24-26 Oct 2007

Unspecific correlation – General Case

• Several UC components:

$$S_{1} \cdot r_{1} \cdot y(t) \cdot \mathbf{k}_{1}^{T} + S_{2} \cdot r_{2} \cdot y(t) \cdot \mathbf{k}_{2}^{T} + \mathsf{K}$$

$$= \left(S_{1} \cdot r_{1} + S_{2} \cdot r_{2} + \mathsf{K}\right) \cdot y(t) \cdot \left(\frac{S_{1} \cdot r_{1}}{S_{1} \cdot r_{1} + S_{2} \cdot r_{2} + \mathsf{K}} \mathbf{k}_{1}^{T} + \frac{S_{2} \cdot r_{2}}{S_{1} \cdot r_{1} + S_{2} \cdot r_{2} + \mathsf{K}} \mathbf{k}_{2}^{T} + \mathsf{K}\right)$$

$$= \left(S \cdot r\right) \cdot y(t) \cdot \mathbf{u}^{T}$$

• Measured spectrum:

$$\mathbf{x}^{T}(t) = y(t) \cdot \mathbf{g}^{T} + (S \cdot r) \cdot y(t) \cdot \mathbf{u}^{T} + \mathbf{x}_{n}^{T}(t)$$

UC from **all** components

Figures of Merit – General Case

Situation:
$$\mathbf{x}^{T}(t) = y(t) \cdot \mathbf{g}^{T} + S \cdot r \cdot y(t) \cdot \mathbf{u}^{T} + \mathbf{x}_{n}^{T}(t)$$
 where $Cov[\mathbf{x}_{n}] = \Sigma$

Calibration: $\mathbf{b}_{c} = \frac{\boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}}{\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}}$ where $\mathbf{g}_{c} = \mathbf{g} + \Delta \mathbf{g}$

Prediction: $\hat{y}(t) = \mathbf{x}^T(t) \cdot \mathbf{b}_c = (y(t) \cdot \mathbf{g}^T + S \cdot r \cdot y(t) \cdot \mathbf{u}^T + \mathbf{x}_n^T(t)) \cdot \mathbf{b}_c$

$$= y(t) \left\{ 1 + \frac{\left(S \cdot r \cdot \mathbf{u} - \Delta \mathbf{g} \right)^T \Sigma_c^- \mathbf{g}_c}{\mathbf{g}_c^T \Sigma_c^- \mathbf{g}_c} \right\} + \frac{\mathbf{x}_n^T(t) \Sigma_c^- \mathbf{g}_c}{\mathbf{g}_c^T \Sigma_c^- \mathbf{g}_c}$$

Specificity

Sensitivity

Proof of specificity =

1.
$$\mathbf{g}_c$$
 "looks right," and

2.
$$\mathbf{g}_c$$
 "stands tall" in $\boldsymbol{\Sigma}_c$

Scatter, $MSE = \left(\frac{\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}_{c}^{-} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}}{\left(\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}_{c}^{-} \mathbf{g}_{c}\right)^{2}} \ge \frac{1}{\mathbf{g}_{c}^{T} \boldsymbol{\Sigma}^{-} \mathbf{g}_{c}} \right)^{2}$

Heidelberg PAT Conference, 24-26 Oct 2007

Proof of specificity – Praxis

Proof of specificity = 1. \mathbf{g}_c "looks right," and 2. \mathbf{g}_c "stands tall" in Σ_c^- (1) Determine **g** from spectroscopic expertise & application knowledge

(2) Determine Σ_c -- estimate Σ and then start adding "extra" noises

$$\Sigma_{c} = \hat{\Sigma} + \sigma_{c,trig}^{2} \left(\hat{\mathbf{k}}_{trig} \, \hat{\mathbf{k}}_{trig}^{T} \right) + \sigma_{c,urea}^{2} \left(\hat{\mathbf{k}}_{urea} \, \hat{\mathbf{k}}_{urea}^{T} \right) + \mathsf{K}$$

→ Specificity of response
 → Long-term stability of calibration
 → Transferability instr.-to-instr.

· ...

Effective trade-off between specificity and sensitivity requires user-control over BOTH \mathbf{g}_c and $\boldsymbol{\Sigma}_c$ (SBC)

Proof of specificity – Praxis (cont'd)

... Two ways to prove the second step

^(*) Slope check is only valid AFTER step (1) is passed

5/51

Current testing practice does not ensure Step (1) is passed !!

- If a "statistical" calibration (PLS, PCR) is affected by UC and then tested on so-called "independent" data that are affected by the same UC, seemingly good predictions (slope=1) can result even w/o any analyte signal
 - Current practice of predicting "independent" spectra guards only against *spurious* correlations, but not against *unspecific* correlations
- Current guidelines of checking for specificity (ICH Q2B; ASTM 1655; etc.) are incomplete/fail in the case of "statistical" calibration (PLS, PCR) and should be amended
 - Step (1) can only be passed by spectroscopic expertise & application knowledge, i.e., a 'responsible scientist' must *define and approve*

Issue with "statistical" calibration (PLS, PCR)

- "Statistical" calibrations are special because they actively search for any correlations to use them as signal
 - Spurious correlations pose additional problem
 - The (implicitly used) estimate, \mathbf{g}_c , is virtually guaranteed to be affected whenever *unspecific* correlations are present

à Step (1) often not passed

27/51

Chambersburg *Shoot-out 2002* Example – API in tablets

Summary of older (non-SBC) calibration methods

- 1. "Classical" and "simple" (few wavelengths) calibrations:
 - Sensitivity likely sub-optimal
 - Specificity if slope OK, then likely OK
- **2. "Statistical" calibrations** (PLS, PCR):
 - Sensitivity often "better" than optimal
 - Specificity often not measuring "the right thing" (fail Step 1)
 - If sensitivity and specificity are to be defined, then "a-posteriori sanctioning" of \mathbf{g}_c is necessary
 - With good application knowledge, "specificity in design space" may be argued
 - When testing prediction slope, "really" independent prediction samples are vital
 - OR, user can try to retreat to statistical point of view

"Measurement Science" vs. "Statistics"

Dividing line:

Knowledge of the "response spectrum" \mathbf{g}_c [AU/mg] of the analyte of interest

Multivariate Statistics

- Specificity & Sensitivity can not be defined
- Only *one* performance metric, viz. correlation ("PRESS^{1/2}", ...)
- Proper word: "Prediction"
- Historically, chemometrics has focused here

Multivariate Measurement Science

- Specificity & Sensitivity can be defined (*two* performance metrics)
- Proper word: "Measurement"
- Historically done in "classical" and "simple" (few wavelengths) calibrations
- Now also possible in the general case where "noise matching" is needed

Example: "BTX" in NIR

- Benzene, Toluene, o-Xylene, m-Xylene, and p-Xylene
- "How well can the three Xylenes be predicted?"
- Typical PLS results:
 - FT-NIR, 1 mm cuvette
 - 6300 4150 cm⁻¹ (1587 2410 nm)

Table 1. Standard errors of predictions obtained for the quantifica-tion of xylene isomers with NIR

Resolution (cm ⁻¹)	SEP for <i>o</i> -xylene (%)	SEP for <i>m</i> -xylene (%)	SEP for <i>p</i> -xylene (%)
16	0.023	0.020	0.017
8	0.021	0.019	0.013
4	0.038	0.035	0.036
2	0.027	0.029	0.028

All concentrations in [%] v-v

From: T. Meyer, J. Oelichmann, H. Kellerhals, *Resolution and suppression of mechanical noise in FT-NIR Spectroscopy*, Trends in Analytical Chemistry 25(1), 19-23, 2006

Response spectra for SBC

- Cary-5000 double-beam spectrometer, SBW=0.5 nm, point spacing 0.2 nm
- 1mm cuvette, "pure" component spectra (p.a.)

"BTX" example: Data set used in PLS analysis

- 50 mixtures ("designer samples")
- 6 repeats each (300 spectra)
 - Overview:

	Toluene	o-Xylene	m-Xylene	p-Xylene	Benzene
Mean	10.37	2.19	1.29	1.52	84.63
Std	5.61	1.58	1.23	1.42	5.61

From: T. Meyer, J. Oelichmann, H. Kellerhals, *Resolution and suppression of mechanical noise in FT-NIR Spectroscopy*, Trends in Analytical Chemistry 25(1), 19-23, 2006

SBC Method, e.g., for Toluene

- Signal, $\mathbf{g} = \mathbf{g}_{Tol} [AU/\%_{v-v}]$
- Noise,

single-beam intensity scaled at other λ's

Heidelberg PAT Conference, 24-26 Oct 2007

35/51

absorbance spectrum

SBC Results, Combination region, 4500 – 4150 cm⁻¹

 $(\Delta v = 16 \ cm^{-1}) \cong (\Delta \lambda = 8 \ nm)$

MATLAB I	Results crea	ated 09-Jun-20	007 21:32:40						
2222.3999	- 2409.600	1 nm, NoRan	ges=1, NoPixel	s=937					
					Res = 7.9964 nm FWHM,				
Results in	"absolute"	units [% v-v]							
							Interferen		
Analytes	NominalCo	Sensitivity	Repeatability	Sen/Rep	Toluene	o-Xylene	m-Xylene	p-Xylene	Benzene
	[%v-v]	[%v-v] rms	[%v-v] rms		Ratio-of-sl	opes [%	v-v] / [+1%	v-v from int	erferent]
Toluene	10.37	0.0095	0.0095	1.0000107	1	0.0000	0.0000	0.0000	0.0000
o-Xylene	2.19	0.0028	0.0028	1.0000018	0.0000	1	0.0000	0.0000	0.0000
m-Xylene	1.29	0.0034	0.0034	1.0000042	0.0000	0.0000	1	0.0000	0.0000
p-Xylene	1.52	0.0072	0.0072	1.0000027	0.0000	0.0000	0.0000	1	0.0000
Benzene	84.63	0.0062	0.0062	1.0000057	0.0000	0.0000	0.0000	0.0000	-
Results in	"relative" u	nits [%] of noi	m. concentratior	ו					
							Interferen	ts	
Analytes	NominalCo	Sensitivity(*)	Repeatability(*)	Sen/Rep	Toluene	o-Xylene	m-Xylene	p-Xylene	Benzene
	[%]	[%] rms	[%] rms		Ratio-of-sl	opes(**)	[%] / [+1% from interfe		erent]
Toluene	100	0.0917	0.0917	1.0000107	1	0.0000	0.0000	0.0000	0.0000
o-Xylene	100	0.1263	0.1263	1.0000018	0.0000	1	0.0000	0.0000	0.0000
m-Xylene	100	0.2613	0.2613	1.0000042	0.0000	0.0000	1	0.0000	0.0000
p-Xylene	100	0.4751	0.4751	1.0000027	0.0000	0.0000	0.0000	1	0.0000
Benzene	100	0.0073	0.0073	1.0000057	0.0000	0.0000	0.0000	0.0000	-
		(*) Highlighte		(**) Highlig	hted if abs	olute value	>0.05		

Response Spectra at ~16 cm⁻¹ in combination region

- Response spectra measured on Cary-5000 (offset by -0.01 [AU/%])
- Golay-Savitzki FWHM = 7.9964 nm

Sensitivity as function of spectral resolution, Combination region

• 4500 - 4150 cm-1

SBC results, 1st Overtone region, 6300 – 5400 cm⁻¹

$(\Delta v = 16 \ cm^{-1}) \cong (\Delta \lambda = 5 \ nm)$

MATLAB H	Results crea	ate	d 10-Jun-20	07 13:53:49						
1587.4 - 1	851.8 nm, l	No	Ranges=1,	NoPixels=1323						
						Res = 5.14	s = 5.1484 nm FWHM,			
Results in	"absolute"	un	nits [% v-v]							
								Interferen		
Analytes	NominalCo	Se	ensitivity	Repeatability	Sen/Rep	Toluene	o-Xylene	m-Xylene p-Xylene		Benzene
	[%v _{-v}]	ſ	%v _{-v}] rms	[%v _{-v}] rms		Ratio-of-sl	opes [%	v-v] / [+1%	·v] / [+1%v-v from inte	
Toluene	10.37		0.0127	0.0127	1.0000241	1	0.0000	0.0001	0.0000	0.0000
o-Xylene	2.19		0.0132	0.0132	1.000014	0.0000	1	0.0000	0.0000	0.0000
m-Xylene	1.29		0.0190	0.0190	1.0000379	0.0000	0.0000	1	0.0001	0.0000
p-Xylene	1.52		0.0149	0.0149	1.0000767	0.0000	0.0000	0.0001	1	0.0000
Benzene	84.63		0.0055	0.0055	1.000012	0.0000	0.0000	0.0000	0.0000	1
Results in	"relative" u	nit	s [%] of nor	n. concentration	ו					
								Interferents		
Analytes	NominalCo	Se	ensitivity(*)	Repeatability(*)	Sen/Rep	Toluene	o-Xylene	m-Xylene	p-Xylene	Benzene
	[%]		[%] rms	[%] rms		Ratio-of-slo	opes(**)	[%] / [+1%	from interfe	erent]
Toluene	100		0.1228	0.1228	1.0000241	1	0.0000	0.0000	0.0000	0.0000
o-Xylene	100		0.6013	0.6013	1.000014	0.0000	1	0.0000	0.0000	0.0000
m-Xylene	100		1.4755	1.4755	1.0000379	0.0000	0.0001	1	0.0001	-0.0001
p-Xylene	100		0.9818	0.9817	1.0000767	0.0000	0.0000	0.0001	1	0.0000
Benzene	100		0.0065	0.0065	1.000012	0.0000	0.0000	0.0000	0.0000	1
	(*) Highlighted if > 1% RMS					(**) Highlig	hted if abs	olute value	>0.05	

Response spectra at ~16 cm⁻¹ in 1st Overtone region

- Response spectra from Cary-5000 (offset by -0.01 [AU/%])
- Golay-Savitzki FWHM = 5.1484 nm

PLS reference concentrations

• 50 standards ("designer samples"), 6 repeats each

Heidelberg PAT Conference, 24-26 Oct 2007

Standards affected by closure (2x)

Closure causes non-zero correlation coefficients

	Toluene	o-Xylene	m-Xylene	p-Xylene	Benzene	oX+mX	oX+pX	mX+pX
Toluene	1	0.2689	-0.3208	-0.0217	-1.0000	0.0217	0.3208	0.3208
o-Xylene	0.2689	1	-0.5121	-0.6694	-0.2689	0.6694	0.5121	0.5121
m-Xylene	-0.3208	-0.5121	1	-0.2953	0.3208	0.2953	-1.0000	-1.0000
p-Xylene	-0.0217	-0.6694	-0.2953	1	0.0217	-1.0000	0.2953	0.2953
Benzene	-1.0000	-0.2689	0.3208	0.0217	1	-0.0217	-0.3208	-0.3208
oX + mX	0.0217	0.6694	0.2953	-1.0000	-0.0217	1	-0.2953	-0.2953
oX + pX	0.3208	0.5121	-1.0000	0.2953	-0.3208	-0.2953	1	1.0000
mX + pX	0.3208	0.5121	-1.0000	0.2953	-0.3208	-0.2953	1.0000	1

Heidelberg PAT Conference, 24-26 Oct 2007

PLS "response" spectrum used for Toluene

PLS "response" spectrum used for o-Xylene

PLS "response" spectrum used for m-Xylene

Heidelberg PAT Conference, 24-26 Oct 2007

PLS "response" spectrum used for p-Xylene

Response spectra used for Benzene

Conclusions

- Multivariate *measurement science* is different from multivariate *statistics*
- Multivariate calibration is NOT complicated
 - Three breaks from traditional thinking, and everything becomes clear
 - Multivariate calibration consists of only two parts, \mathbf{g}_c and $\mathbf{\Sigma}_c^-$
- Taking control over **both** inputs is the only way to (a) prove specificity from spectroscopic first-principles and (b) trade-off specificity vs. sensitivity in an effective and user-controlled way
 - "Enabling" technology; used in Finland since 2001
- SBC makes multivariate calibration as simple & intuitive as univariate
 - Only difference: Analyst can influence the trade-off between specificity/robustness vs. short-term noise/repeatability
- Existing statistical calibrations (PLS, PCR) should be re-evaluated in light of the scientific understanding generated by SBC
 - As much as several 10% of NIR applications may be affected by unspecific correlations

Conclusions (cont'd)

- Current methods for testing specificity (ASTM 1655; ICH Q2B; etc.) should be amended. **Spectrometric community should start discussion.**
- Role of chemometricians will grow in future. Focus will shift back to spectroscopy & chemistry à "responsible application scientist"
- Community & Scientific Journals should start to enforce a rule:

"Every manuscript must plot the (implicitly used) response spectrum"

• The best days of spectrometry are still ahead !!!

References:

SBC method

- 1. R. Marbach, On Wiener filtering and the physics behind statistical modeling, J. Biomed. Optics <u>7</u>, 130-147 (2002)
- 2. R. Marbach, *Methods to significantly reduce the calibration cost of multichannel measurement instruments*, US Pat. No. *6,629, 041*, 30 Sep. 2003
- 3. R. Marbach, A New Method for Multivariate Calibration, J. Near Infrared Spectroscopy 13, 241 254 (2005)
- 4. R.P. Cogdill and C.A. Anderson, *Efficient spectroscopic calibration using net analyte signal and pure component projection methods,* J. Near Infrared Spectrosc. 13, 119-132 (2005)

Figures of merit

- 5. A.C. Olivieri, N.M. Faaber, J. Ferre, R. Boque, J.H. Kalivas, H. Mark, *Uncertainty estimation and figures of merit for multivariate calibration,* (IUPAC Technical Report), Pure Appl. Chem. 78, 633-661 (2006)
- 6. R. Marbach, Figures of merit for multivariate measurement systems: selectivity and sensitivity, in preparation

Thank you for your attention!

Ralf Marbach VTT Optical Instrument Center, www.vtt.fi/oic ralf.marbach@vtt.fi , Ph. +358 40 770 8375

Heidelberg PAT Conference, 24-26 Oct 2007