THINKING RISK IN A DEVELOPMENT ENVIRONMENT – AN INDUSTRIAL VIEW

Hiep Huatan, PhD
Director, H2 Pharma Consulting Limited

Overview

- Understanding risk in Development
- Usefulness of current regulatory framework strengths and weaknesses
- Adaptation of Risk Management concept for early Development
- Integration of Risk Management into design space model

Why understanding risk so important in Development?

- Drug development based fundamentally on minimising and managing risk
 "Risk is defined as the combination of the probability of occurrence of harm and the severity of that harm"
- Risk management enables probability of harm to be qualified and/or quantified and appropriate actions to be established to minimise occurrence and impact
- Objective in Development is to integrate risk management into overall product design lifecycle

How does risk feature in a Development framework?

- Long been "informal" practice within Development environment
- FDA initiative "GMP for 21st Century" sought to formalise risk-based approach for entire product development life-cycle
- ICH Q8, Q9 (and Q10) provide guidance for integration of quality risk management (QRM) into product design, development and manufacturing processes
- Excellent reviews also provided by PQRI Working group Dec 2006 on Process Robustness and Leyseele 2007 (Pharma Insight) on QRM
- So does it work in practice?

Reality more complex can theory...?

- Linkage between ICH Q8, Q9 and Q10 exist in principle but challenging to reduce to practice for Development setting
 - 1. ICH (Q8?) and Q9 centric on late phase development and NOT enough on early Development practices...?
 - 2. Little practical guidance for conducting risk assessment in Early development
 - 3. Risk management tools that work well for manufacturing needs adapting for R&D (not facile!)

Application of risk assessment tool - Fishbone

- Excellent tool for risk identification
- Methodical reduces chance of missing critical parameters
 - End out-put can very wide and requires significant triaging
 - Needs additional tool for risk evaluation (FMEA)
- Can be difficult to work with in early development

Application of risk assessment tool - FMEA

Key parameters	API particle size	мсс	Lac	DCP	Disintg	MgSt	Blending	RC	wg	DC	Milling	Lube	Compress/n	Film coating
Appearance	н	L	L	L	L	L	L	L	н	Н	L	L	L	L
Identity	L	L	L	L	L	L	L	L	L	L	L	L	L	L
Assay	L	L	L	н	L	L	L	L	L	L	L	L	L	L
Impurities	н	L	н	L	L	L	L	L	L	L	L	L	L	L
Content uniformity	Н	L	L	L	L	L	L	L	L	L	L	L	L	L
Disintegration	L	L	L	L	н	L	н	L	L	L	L	L	L	L
Dissolution	Н	L	L	L	L	L	L	L	L	L	L	L	L	L

- Widely used as it allows direct reference to target parameters
- Enables weighting of likelihood of occurrence followed by analysis of impact severity to prioritise focus
- Enables prioritisation and focus of development studies
- Not ideal tool for triaging formulation composition selection as overall matrix can be very large (data also mostly unavailable to assess impact severity)

Applying risk analysis in early development

Key issues:

- Initial formulation / process selection weakest link
- Process can be very subjective due to lack of data
- Limited cross-fertilisation of knowledge across groups/divisions
- RA process can be unnecessarily complex due to multiplicity of substrate

Impact:

- Potential for inappropriate and inconsistent formulation selection
- Emphasis on process to correct formulation design inefficiencies

How can the process be improved...?

Evolving industrial approach

- Institute more defined processes for formulation and process selection
 - Best practices, formulation manuals, internal guidance documents
- Minimise subjectivity during initial formulation/process development
- Encourage use of "targeted" and "rational" risk-assessment rather than blanket use of available tools
- Define risk category to determine downstream risk-assessment scrutiny
 - (1) what is known \rightarrow in the box
 - (2) what is less known \rightarrow out of the box

Defining the initial formulation

Existing design space model

Determine the design space for API in a given system

Simplified approach for initial formulation and process selection

Evaluate whether API fit pre-determined design space (as a starting point)

Design space developed with substantial dataset gained over many years with both development and commercial products

Non-standardised complex "Out-of-the-box" approach

- Apply exactly same principles and activity flow
- In-the-box: use standardised formulation / process approaches
- Out-of-the box: supplement with detailed guidance on formulation and processing options to accompany risk assessment

Example 3: Complex MR formulation development

Defined formulation for MR osmotic formulations

	"In-the-Box"		"Out-of-the-Box"				
Dose	1-150mg		> 150mg				
Release Rate	6h < T _{80%} < 16 h		T _{80%} < 6 h or T _{80%} > 16 h				
API Form	Crystalline drug		SDD, drug+ solubilizer				
Loading in the SCT							
Drug Layer (weight-%)			others				
Drug layer formulation	Direct compression		Aqueous fluid-bed				
Drug layer processing	Solvent high-shear wet granulation		Aqueous high shear wet				
	Roller compaction		on Ogranulation				
Sweller layer		IIIUstra	others				
formulation	•	IIInze.	Aqueous fluid-bed				
Sweller layer	Direct compression		Aqueous high shear wet				
processing	High-shear wet granulation		granulation				
			Phase III - to				
Scale of Manufacture	Phase I and Phase II		Commercial				
	Solvent based CA/PEG		others				
Coatings							
Delivery Port							

Summary

- Risk assessment is a crucial part of drug development process
- Current guidelines provide good initial framework but can be difficult to implement in practice for early development
- Institution of best practices reduces subjectivity of the risk assessment and can help to direct focus

