

Sampling Level I: Interaction with the Process

- Critical considerations (assuming you need to add a new sensor or sampling method):
 - Where should sensors be located (samples be taken)?
 - How many sensors/locations should be interrogated?
 - What speed is required for the measurement to be "timely"?
 - Will the sensor impact the process performance; or, will the process impact sensor performance?
 - What sort of materials are required?
 - Are there critical issues w/regard to maintenance access?
- PAT measurement systems/schemes must be designed for the intended application

DUQUESN UNIVERSIT

- Critical factors affecting performance
- Systems for continuously verifying measurement suitability
- Is redundancy and robustness planned for in the system?

Sampling Level II: Within-Batch Sampling

- Critical considerations (now that you have a new sensor):
 - How much of the product should be sampled?
 - Suitability of "traditional" sampling methods: an analysis of USP <905>
 - PhD Research project of Phil Lunney
- See also:
 - Validation Column: A Prevention Based Strategy for Quality Control Using PAT, Philip Lunney and James K. Drennen, III, NIRNews 16/4, May/June 2005

DUQUES

 Development of a content uniformity test suitable for large sample sizes, *PhRMA CMC Statistics Expert Team:* Dennis Sandell, Myron Diener, Kim Vukovinsky, Jeff Hofer, James Pazdan, *Drug Information Journal.* 40(3), August 2006

Sampling Level II: Within-Batch Sampling

- Details of USP <905> Test for Content Uniformity
 - Select 30 units from final lot
 - Random Sample not specified
 - Only 10 subjected to analysis
 - Initial Test fails if
 - \bullet One tablet lies outside of the range 85 115 % and/or
 - ◆ RSD > 6%
 - If initial test fails, remaining 20 are analyzed
 - Method reliability absolutely dependent on initial sample of 10

	Typical Random Sample Results Initial Sample of 10								
S	ample	Min	Max	RSD	Result				
1		99.7	102.1	0.67	Pass				
2		98.9	114.6	4.61	Pass (?!)				
3		98.3	147.7	14.46	Fail				
4		98.1	102.2	1.25	Pass				
5		98.8	126.0	8.43	Fail				
20									

Binomial Probabilities for Sample Size of 10

Number of Defects	1% Defects present	5% Defects present	10% Defects present	This first row
0	.9044	.5987	.3487	represents the
1	.0914	.3151	.3874	probability of
2	.0042	.0746	.1937	"passing" USP
3	.0001	.0105	.0574	<905> for a give defect level
4	.0000	.0010	.0112	
5	.0000	.0001	.0015	1
6	.0000	.0000	.0001	1
7	.0000	.0000	.0000	
8	.0000	.0000	.0000	1
9	.0000	.0000	.0000	1
10	.0000	.0000	.0000	DU DU

Sampling Level II: Within-Batch Sampling

- So, what does this mean?
 - How many (tablets, etc.) should be tested?
 - All of them? **NO**
 - Must sampling be in-line and automatic? **maybe**
 - The question needs to change-
 - How many samples must be taken to detect a failure?
 - How should we sample in order to control?
- Current research at DCPT:
 - Determining the impact of sensor and calibration performance on sampling requirements and method suitability
 DUQUESN UNIVERSITY

