

Making Implementation of Quality by Design in the Generic Industry a Successful Business Advantage

Line Lundsberg-Nielsen, PhD
Lundsberg Consulting
QbD / PAT Conference, 27 September 2012, Heidelberg

© European Compliance Academy (ECA

Outline

- Is there a business case for the Generic Industry to apply QbD principles?
- How to implement QbD from a practical point of view
 - How can QbD help prioritise development activities?
 - QbD Roadmap
 - QRM tools
 - DoE
 - PAT
 - Templates
- Result of a successful implementation
 - · Process Validation
 - Development activities, QbR, ANDAs
 - Industry Progress

© European Compliance Academy (ECA)

Outline

- Is there a business case for the Generic Industry to apply QbD principles?
- How to implement QbD from a practical point of view
 - How can QbD help prioritise development activities?
 - QbD Roadmap
 - QRM tools
 - DoE
 - PAT
 - Templates
- Result of a successful implementation
 - Process Validation
 - Development activities, QbR, ANDAs
 - Industry Progress

© European Compliance Academy (ECA)

The driver behind QbD in Generics

- The Generic market is expanding >75% of prescriptions in US are being filed with generic products
- Crucial need to develop more efficient, reliable and versatile manufacturing methods
- Extensive manufacturing expertise in the industry
 - Generic companies often manufacture 100-500 different products
 - · Product and process understanding is critical for efficiency
- Many elements of QbD have been in use by the industry for many years but without being as systematic and science driven
- Generic industry is used to be more risk oriented

So why not use this advantage to start implementing QbD?

© European Compliance Academy (EC

The expected benefits of QbD within the Generics

- 1. More robust processes & shorter development time!
 - QRM and DoE will enable the industry to concentrate on what is really important rather than trying at everything with not much consequence
 - PAT will reduce off-line testing and hence save much time too in development
- 2. QbD will improve the image of generic products, resulting in better sales
 - QbD unfortunately seems like an 'innovator-only' forte, but focusing on designing quality into the products should help the patient making the right product choice
- 3. Compliance: The generic industry will have to do it now. They can stall it for awhile, but sooner rather than later they have to do it.
 - The DMF/ANDA approval and review procedure is changing
 - QbR will based on QbD

Quotes from a "generic friend"

© European Compliance Academy (ECA)

Why does Generics quiver at the idea of QbD?

- The Generic Industry has begun to implement QbD later than the innovators
- Now the generics are catching up and trying to learn and implement faster which is not always possible
- · The expectation that QbD will take too much time
 - ⇒ It will not be possible to be First-to-File
 - ⇒ How to establish a QTPP and start QbD when there is no RLD yet?
- No post-approval concrete promise, what are the industry getting in return for QbD submissions?

Quotes from a "generic friend"

© European Compliance Academy (ECA)

· Development activities, QbR, ANDAs

• Industry Progress

© European Compliance Academy (ECA)

Practical implementation of QbD

- Systematic approach be fast and effective
 - Corporate policy/guide (senior management support)
 - Corporate QbD roadmap
 - Prioritisation
 - ⇒ Quality Risk Management
 - Activities with clear scope and short time frame (DMAIC)
 - · Common Tools
 - ⇒ Process Map
 - ⇒ Risk Assessment tools including scales
 - \Rightarrow DoE and other PAT tools
 - Templates, SOPs, Reporting & documentation
- Supportive Pharmaceutical Quality System
 - · Updated to reflect an effective and systematic QbD approach
- Cross functional teams
- Knowledge sharing
 - · Prior knowledge, best practises, lessons learned

© European Compliance Academy (ECA)

Drug product development, approach – from CQA to Control Strategy

- Use risk assessment to identify all possible drug substance and excipient attributes/amounts that could impact the performance of the product
- 2. Determine levels or ranges of these attributes.
- 3. Use appropriate DOE to design experiments.
- 4. Conduct actual experiments.
- 5. Analyse the experimental data to determine if an input material attribute is critical.
- 6. Define a Control Strategy for critical material attributes (acceptable ranges)

© European Compliance Academy (ECA)

Drug Release (whole tablets vs. half tablets)

Ref: FDA MR ANDA case study

Alcohol Induced Dose

Dumping

* ECA * * * * EUROPEAN COMPITANCE ACADEMY

Design of Experiments

DoE is a very strong tool that helps to:

Low

Low

- · Gain process understanding
- Identify CPPs and MAs
- Can be applied for

Drug Release (whole tablets vs. half tablets)

© European Compliance Academy (ECA)

Alcohol Induced Dose

Dumping

- Product design, eg formulation or chemical composition
- · Process design
- · Process robustness
- · Process optimisation
- · Analytical methods
- · Process validation

© European Compliance Academy (ECA)

Design of Experiments applied to product development

- DoE is a systematic approach to investigation of a system or process with as few experiments as possible
- A series of structured tests with planned changes to more than one input variable (potential CPPs and material attributes) of the process under investigation
- The effects of these changes on a pre-defined output (potential CQAs) are assessed
- Interaction between process parameters are explored

© European Compliance Academy (ECA)

DoE for optimising the spraying process

- Input Potential CPPs:
 - A: Air-flow rate (cubic feet per minute)
 - B: Spray rate (g/min)
 - C: Atomizer pressure (bar)
 - D: Product temperature (C) (adjusted by inlet air temp)
- Output CQAs and In-process material attributes:
 - · CQA: Assay
 - MA: Bead Particles
 - ⇒ Fines
 - ⇒ Agglomerates

© European Compliance Academy (ECA)

PAT

- PAT is still in its premature stage in many Generic companies
- Cost, skill sets and traditions are the main obstacles
- But the sector can gain significantly if PAT tools are applied during development, eg. in process chemistry
- Outcome: Process understanding gained faster and easier to identify CPPs, MAs and establishing a proper Control Strategy
- But PAT interest is increasing every day, particularly DoE, MVDA, NIR, FBRM and Raman technologies

© European Compliance Academy (ECA)

Templates

- Helps to make the activity:
 - A consistent way of working
 - More systematic
 - · Science & Risk based approach are build into the templates
 - · A constructive tool for cross-functional team work
 - · Easier to share
 - · Already filled-out template can be re-used
 - Faster to execute
 - · Relevant aspects covered
- Everyone using the same tool, avoid inventing the wheel twice!
- Can be used for, e.g.:
 - QTPP, CQAs, Risk Assessment tools (cause/effect matrix, fishbone, FMEA, RAMM, etc) incl reference to prior knowledge, DoE incl justification for proposed experiments, CPPs, CMAs, Design Space, Ranges, Control Strategy, Process Validation etc

© European Compliance Academy (ECA

35

Example, CQAs

- Have a procedure in place on how to identify and determine CQAs, how to document, review frequency, who should be involved, milestones, approval etc
- Generic list of CQAs for each typical formulation class, e.g. based on release mechanism as well as formulation class (oral solid; oral liquid; injection; suspension)
- Criticality assessment procedure,
 i.e. how to determine if a QA is Critical
- The link from the CQAs/QAs to the QTPP
- Target range for the CQAs/QAs, including justification
- References

© European Compliance Academy (ECA

Outline

- Is there a business case for the Generic Industry to apply QbD principles?
- How to implement QbD from a practical point of view
 - How can QbD help prioritise development activities
 - QbD Roadmap
 - QRM tools
 - DoE
 - PAT
 - Templates
- Result of a successful implementation
 - Process Validation
 - · Development activities, QbR, ANDAs
 - Industry Progress

© European Compliance Academy (ECA)

37

Process Validation, definition (FDA)

"Process validation is the collection and evaluation of data, from the process design stage throughout production, which establishes scientific evidence that a process is capable of consistently delivering quality products."

FDA PV guide

© European Compliance Academy (ECA)

• Understanding sources of variation

- Understanding the impact of process and material variability on the product quality
- Established controls to control variation in a manner commensurate with the risk it represents to the process and product

© European Compliance Academy (ECA)

Validation lifecycle stages

Stage 1: Process Design

 Defines the commercial process including a control strategy based on knowledge gained through development and scale-up

Stage 2: Process Qualification

 Confirms the process design as being capable of reproducible commercial manufacturing

Stage 3: Continued Process Verification

 On-going assurance that during routine production the process remains in a state of control

© European Compliance Academy (ECA)

4

PV stage 1 - examples of deliverables

Elements	Description
Quality Attributes (CQAs)	Important Product Characteristics
Process Flow Diagram	Description of unit operations, including draft batch record
Quality Risk Assessment	Risk/Criticality/impact assessment of incoming raw and in-process materials and unit operations on drug product quality of unit operations and material attributes on drug product quality
Process Parameters (CPPs)	Identification of any critical process parameters that should be monitored and/or controlled to ensure product quality
Material Attribute (CMAs)	Any excipient quality attributes that has been identified to have an impact on the CQAs. Specifications for these
Scale issues	Expected or Predicted impact of scale at this stage (may not yet be known, but should be predicted at a minimum)
Operating ranges (eg Design Space)	For all relevant process parameters and quality attributes, any ranges, design spaces, models
Control strategy	Mechanisms to sample, measure and control the drug product quality incl. any material attributes or process parameters

Link between QbD and PV

- QbD and Process Validation are interlinked
- PV stage 1 is sometimes called "QbD"...
- Many Process Validation elements are nearly "given for free" if working in a QbD framework, e.g. Stage 1, and Stage 3
- Stage 2.2 Process Performance Qualification is "verifying the control strategy"
- Application of prior knowledge including experience from similar products can be used to justify appropriate validation/verification activities
- Maintaining a state of control is exactly what should be the output of an enhanced QbD approach!

© European Compliance Academy (ECA)

43

Process Validation – Legacy Products The 7 Step Model

- The 7 step model was developed by NNE Pharmaplan to help organizations implement the FDA Process Validation Guidance
- It was designed to cope with legacy products in potentially high pressure situations, including Generics
- It is a Science & Risk based QbD approach
- Each step has associated tools, methodologies and skills sets which are required for speedy and successful execution
- The model has successfully been used in the Generic Industry for:
 - Closing compliance issues in relation to Process Validation
 - Establishing a Stage 3 CPV plan

© European Compliance Academy (ECA)

Question-Based Review (QbR)

- The QbR is a framework for CMC assessment of ANDAs
- QbR is a set of questions to be answered in the Overall Quality Summary
- A guide to the reviewer in the evaluation of whether a product is of high quality and in the determination of the level of risk associated with the manufacture and design of the product
- Transparency to sponsors about the logic that reviewers invoke in their CMC reviews
- QbD helps answering the current questions
- QbR to be updated to reflect QbD

© European Compliance Academy (ECA)

47

FDA Expectations from January 2013

- ANDA to contain at least the minimum information on pharmaceutical development described by ICH Q8(R2):
 - Quality target product profile (QTPP)
 - Critical quality attributes (CQAs) of the drug product
 - CQAs of the drug substance and excipients.
 - Selection of an appropriate manufacturing process.
 - Control strategy
- Additional
 - Information that conveys an understanding of the development of the drug product and its manufacturing process
 - Identification of those aspects of drug substances, excipients, container closure systems, and manufacturing processes that are critical to product quality that support the safety and efficacy of the drug product
 - Justifications for the control strategy

Ref.: FDA, CDER, OPS, MAPP 5016.1 08.02.2011 & K Webber, Deputy Director FDA, CDER, OPS; EGA/ISPE Brussels June 2012

© European Compliance Academy (ECA)

Proposed new QbR Questions, 2.3.P Drug Product, examples

2.3.P.2 Pharmaceutical Development

- What are the characteristics of the RLD Product?
- What are the elements, targets and justifications of the Quality Target Product Profile (QTPP)?
- For each quality attribute of the drug product, what is the target and how is it justified? How were the critical quality attributes (CQAs) selected?
- If applicable, what in-vitro bio-performance evaluations (i.e., dissolution method, flux assay, etc.) were used during pharmaceutical development and how were they developed?

J. Maguire & K. Bernard, CMC Reviewers Office of Generic Drugs, FDA GPhA/FDA CMC Workshop, May, 2012

© European Compliance Academy (ECA)

49

2.3.P.2.2 Drug Product

- How was the drug product designed to meet the drug product QTPP and CQAs?
- How were the excipient types and grades selected?
- What formulation development studies, including screening, characterization, optimization, and verification (robustness), if any, were conducted?
- What attributes of the drug substance, excipients, and in-process materials were identified as critical via risk assessment and Design of Experiments when appropriate and how are they related to the drug product CQAs?

J. Maguire & K. Bernard, CMC Reviewers Office of Generic Drugs, FDA GPhA/FDA CMC Workshop, May, 2012

© European Compliance Academy (ECA)

2.3.P.2.3 Manufacturing Process Development

- What is the rationale for selecting this manufacturing process for the drug product?
- What process development studies, including screening, characterization, optimization, and verification (robustness), if any, were conducted and at what scale?
- What is the process map listing input material attributes, process parameters, and output material quality attributes for all of the unit operations in the manufacturing process?

J. Maguire & K. Bernard, CMC Reviewers Office of Generic Drugs, FDA GPhA/FDA CMC Workshop, May, 2012

© European Compliance Academy (ECA)

51

2.3.P.2.3 Manufacturing Process Development

- For each unit operation, what process parameters and material attributes (drug substance, excipients and in-process materials) were identified as critical via risk assessment and Design of Experiments when appropriate and how are they related to the drug product CQAs?
- What is the Control Strategy for CMAs of input materials, CPPs of manufacturing process, and CQAs of output materials for each unit operation?
- How was scale dependence for each process step evaluated during pharmaceutical development? How did the critical process parameters change across scale?

J. Maguire & K. Bernard, CMC Reviewers Office of Generic Drugs, FDA GPhA/FDA CMC Workshop, May, 2012

© European Compliance Academy (ECA)

How are the industry progressing

- Many generic companies are now implementing QbD principles
 - FDA/GPhA case studies being used for inspiration
 - · QRM being implemented
 - DoE is becoming more popular
 - Process Analysers and Real Time Release Testing less widespread
 - Several papers been presented by the Industry
- First full QbD ANDA has been submitted (to my knowledge)
- QbD principles being applied in API, drug product and for biologics

© European Compliance Academy (ECA

53

Conclusion

- QbD is also for the Generic Industry and they are catching up with passion and significant dedication!
- Should have a positive influence on First-to-File as more understanding gained during development and "file first, develop later" can be avoided
- QbR will be QbD oriented
- FDA expects "minimal approach", Q8
- EMA expects similar (company experiences)
- Future challenges will be to invest in PAT
- ... but no reason for not getting on board and make it a business driver!

© European Compliance Academy (ECA

© European Compliance Academy (ECA)