

PAT Implemented for Continuous Manufacturing

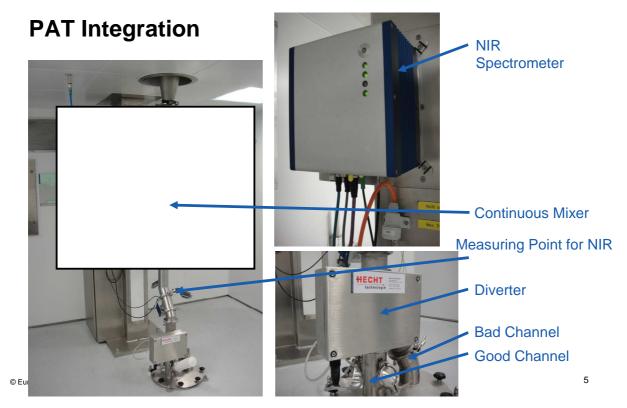
Dr. Mark Smith Process Analytical Sciences Group Pfizer Global Supply

© European Compliance Academy (ECA)

Continuous Manufacturing

- Continuous manufacturing can provide
 - Increased production with a small equipment footprint
 - Ease of scale-up
 - Lightly attended, flexible manufacturing
- Development of personalized medicine concepts are becoming a reality
 - Will require flexible, low volume, low inventory manufacturing of high value products
- Pressures for local manufacturing
 - Many of the Governments in the emerging markets will insist on local manufacturing
 - ⇒ Continuous processing based on mobile skids is seen as a possible solution

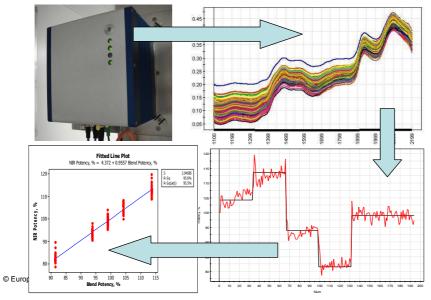
Continuous DP Manufacturing – Direct Compression Tablet


- Three level concept
 - Existing docking stations and tablet press
 - New feeding, dispensing, mixing, and blend transfer
 - Throughput aligned across process
- PAT and process measurements more critical for controlling continuous processes
 - May better facilitate RTRt ⇒ Overall approach to RTRt is similar
- Continuous process must be accompanied by the correct control strategy

Feeding and Dispensing System

PAT Integration

- Interface between PAT and process is critical
 - Ensure good powder contact on probe
 - Minimize impact of dynamic powder flow
 - Avoid segregation potential

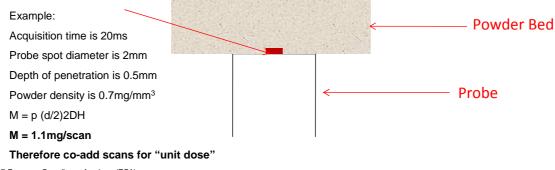

Tablet Press

NIR Blend Potency

 Method developed using a combination of pre-blend and dynamic batches across the range 85 – 115% LC

Process Parameters Determining Potency and CU

- In a typical batch solid drug product process:
 - Primary Blend Potency (CU) = f weighing + mixing
- In a batch process weighing and mixing are a one time event
- In a continuous process, weighing and mixing operation is repeated many ten's of thousands of times
 - Operation is time variant in nature
- For a continuous process, the material flow can be considered a stream of "micro batches", each having a discrete potency and CU.
- Sampling of a continuous process should take into account the rate at which "micro batches" are flowing from the system.
- Sampling should be time variant, and match material throughput


© European Compliance Academy (ECA)

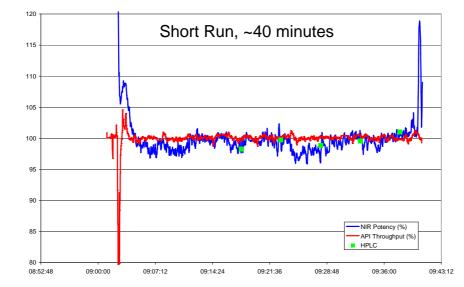
Sample Size Calculation

- The sample size that is measured by NIR depends on
 - Probe spot size
 - Penetration Depth of light
 - Powder Density
- A single measurement may be much less than a unit dose


Sample that probe sees

Steady-State

- Based on combination of process and measured parameters
 - Throughput ~60 kg/hour (300,000 tablets/hour)



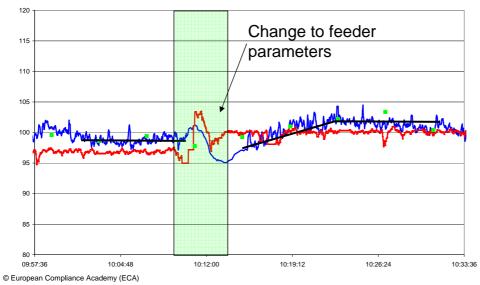
© European Compliance Academy (ECA)

NIR Blend Potency

Independent runs performed, with comparison to tablet data

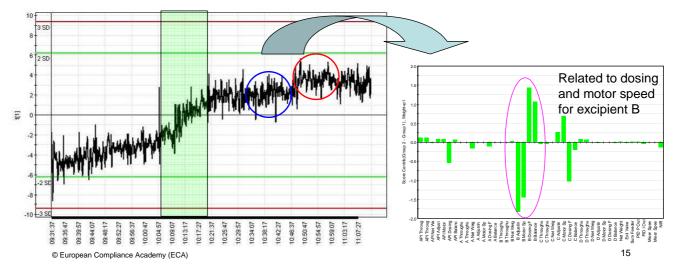
12

NIR Blend Potency



Independent runs performed with comparison to tablet data

Artificial Potency Ramp

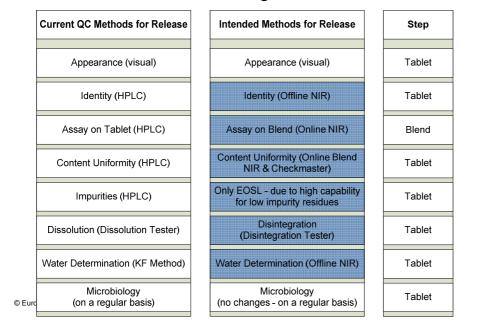

- Small ramp (~3%) introduced through API feeder
 - Indication of residence times and effect of disturbances

Multivariate Condition Monitoring

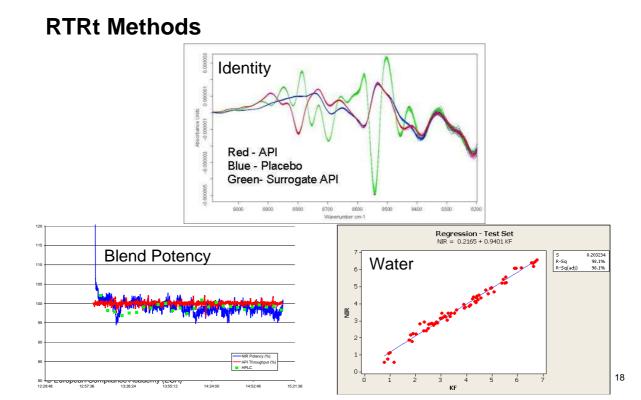
 >50 parameters related to dosing, feeding, mixing of all raw materials monitored simultaneously

• Identify deviations from normal operation

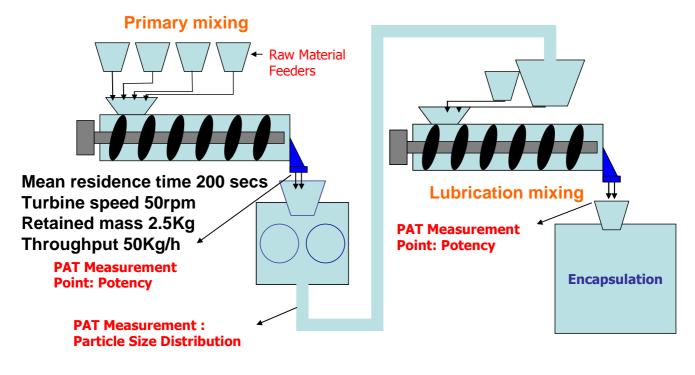
Release Approaches for a Continuous Process


 Enhanced understanding of product performance can justify the use of surrogate tests or support real-time release in lieu of end-product testing. For example, disintegration could serve as a surrogate for dissolution for fast-disintegrating solid forms with highly soluble drug substances. Unit dose uniformity performed in-process (e.g., using weight variation coupled with near infrared (NIR) assay) can enable real-time release and provide an increased level of quality assurance compared to the traditional end-product testing using compendial content uniformity standards.

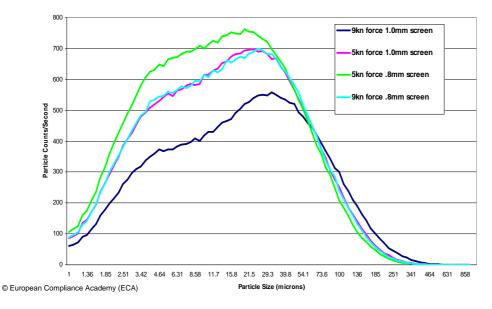
Q8(R1) Pharmaceutical Development Revision 1


RTRt Strategy

Continuous blend monitoring forms critical element of release



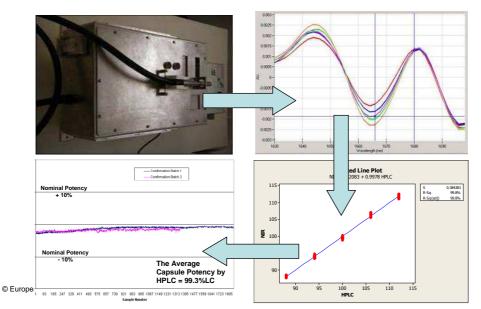
Continuous Dry Granulation


Continuous Dry Granulation Control Panel FBRM Probe Interface K-Tron LIW Feeders and liax Vac-u-max Receivers Blenders Mag Stearate NIR Probes Metal Reservoir with Detectors with Retractable Diverters Valve Gerteis Roller Compactor ЯВС Floor Scale Bulk Bag Stations \square Comils Þ +Not to scale. piping not shown. NIR and FBRM Probe Interface, Final blend

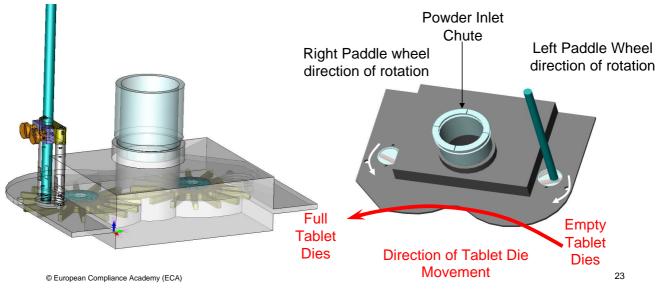
© European Compliance Academy (ECA)

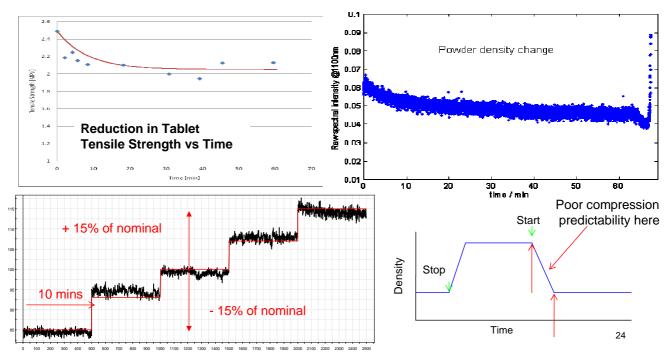
Granule PSD at different processing conditions

- An understanding of the impact of processing conditions
 - Potential for control to ensure consistent output



NIR Blend Potency

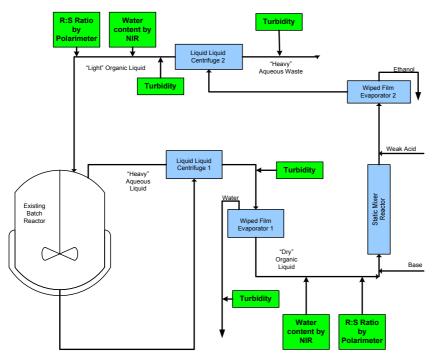

 Method developed using a combination of pre-blend and dynamic batches across the range 88 – 112% LC


Tablet Feed-frame Monitoring

- PAT applied for monitoring blend in the feed-frame / encapsultor
 - Unit operation that is already continuous (semi-continuous)

Tablet Feed-frame Monitoring

Potential Benefits


- Increased process understanding of blending and compression process
- Understand and monitor feed-frame function
- Ability to detect segregation during powder transfer from IBC to the tablet press
- Applicable to both Batch and Continuous Processes
- Integration of PAT signal and tablet press weight control signal into compression machine logic
 - Advanced Process Control
- Opportunity to implement as part of RTRt paradigm

© European Compliance Academy (ECA)

25

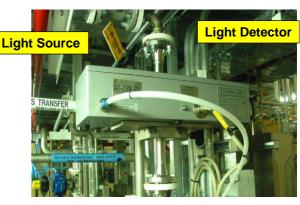
Continuous API Manufacturing – Hybrid Process

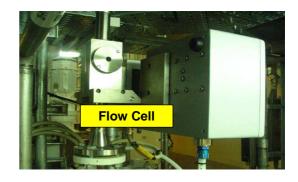
In-line Turbidity

- Used to measure the turbidity of organic phase leaving the separator
 - Control destination of organic stream
- Used to measure the turbidity of the organic and aqueous phase leaving the separator
 - Monitor performance of separator
- Automatic process control

© European Compliance Academy (ECA)

Water and Ethanol Monitoring


- Process downstream sensitive to both water and ethanol content
- Measurement of water and ethanol level using NIR
 - Method qualified and used for control of process



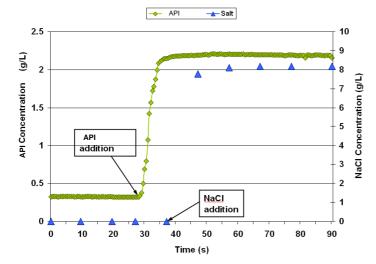
Polarimetry

- Assessment of reaction rate
- Measurement of optical rotation of input and output streams
 - Accurately determine feed stream concentration
 - Correlation demonstrated between enantiomeric composition and optical rotation
 - ⇒ Applied for process monitoring

© European Compliance Academy (ECA)

Continuous Liquid Manufacturing

- Applications include
 - Coating applications
 - Solutions/suspensions for aseptic fill/finish
- Production Technology
 - Mixers
 - \Rightarrow High Shear mixers (Particle size reduction and dissolution)
 - ⇒ Static Mixers (dissolution)
 - Powder dispenser (Loss in weight feeders)
 - May other operations already continuous
 ⇒ e.g. Filling



© European Compliance Academy (ECA)

PAT for Continuous Liquids Manufacturing

- UV spectroscopy for monitoring API addition/mixing
- Conductivity for monitoring salt addition

© European Compliance Academy (ECA)

Summary

- A number of unit operations are already continuous / semi-continuous by their nature, others require new equipment and investment
- A suitable control and release strategy (often incorporating PAT) must be established
 - Including back-up strategies
- PAT is critical for monitoring and controlling continuous processes
 - Potential for time variant events
- PAT method development must take into account the dynamic nature of the process (e.g. probe design and sampling)
- An enhanced understanding of material characteristics required
 - e.g. flow characteristics and cohesive properties
- Continuous systems must be capable for multiple products / volumes

Acknowledgements

- Process Analytical Sciences Group
- Pfizer Manufacturing Sites
 - PGS Illertisen
 - PGS Caguas
 - PGS Singapore
- PPD Freiburg
- Global Manufacturing Services
 - GAPT
 - TSO
- GCMC
- WRD
- Many other highly engaged colleagues!

© European Compliance Academy (ECA)