# From API to Formulated Product

Jean-Marie Geoffroy, PhD Director, Product Development Takeda Global Research & Development 675 N Field Drive Lake Forest, IL 60045 jean-marie.geoffroy@tgrd.com



## Acknowledgments

- Claudia Davila
- Dale Brinker
- Trupti Dixit
- Yoshio Matsuhisa
- Hirokazu Matsunaga
- Takehiro Okumura
- Akira Kondo
- Masafumi Misaki

- Makoto Fukuta
- Jeremy Baumann
- Hiroshi Fukada
- Yoshio Mizukami
- Hiroaki Arima
- Dale Brinker
- Jim Morley
- Mitsuhiro Mori

### **Objectives**

- Truly robust analytical methods
- A knowledge management framework for API and DP product development
- What is process understanding and how can it be enhanced
- Understanding links between API and raw materials, to final product processing and performance
- Opportunities for facilitating a significantly improved continuum between R&D and manufacture



Narita Airport, April 11<sup>th</sup>, 2009

#### Airbus A380 Design Goals Clearly Defined Up Front (TPP)



# Flying vs Developing Drugs: Similarities & Differences

- Always fly in air, pharma products usually are processed in air (usually) but sometimes not (lyophilization, N<sub>2</sub> blanketing, etc.)
- Water & wind are noise factors for airplanes, pharma uses them to process products
- Electricity (lightening) is a noise factor for airplanes, pharma sometimes creates its own electrostatics while processing drugs, leading to problems, or it is sometimes used for drug deposition
- The body of planes do not (chemically) react (quickly) to their environment, drugs typically degrade and water doesn't help
- Factors affecting flying are well understood; factors affecting drug product safety, efficacy, manufacturability, etc., are not well understood
- As a result, airplanes can be designed in silica, drugs have yet to be fully designed in silica

# States of Pharma Manufacturing

| Level of Understanding &<br>Knowledge        | $\sigma$ Capability | Potential                                            | Actual                                                        |
|----------------------------------------------|---------------------|------------------------------------------------------|---------------------------------------------------------------|
| First Principles &<br>Mechanistic Modeling   | ≥6                  | Drying<br>Blending<br>Spray Drying<br>Tablet Coating |                                                               |
| Empirical Modeling                           | 3-5                 | Compression<br>Roller Compaction                     | Drying<br>Spray Drying<br>Roller Compaction<br>Tablet Coating |
| Correlative Understanding<br>(Trial & Error) | 2                   | Wet Granulation                                      | Compression<br>Blending<br>Wet Granulation<br>Tablet Coating  |
| Descriptive Knowledge                        | <2                  |                                                      | Wet Granulation                                               |

### **Performance Comparison for Various Industries**

#### **Operations in Pharmaceuticals Compare Poorly to Other Industries**

The pharmaceutical industry lags similar industries in key measures of operations performance, most notably in overall equipment effectiveness, labor value-add time and direct/indirect labor ratio, McKinsey's Ted Fuhr told the recent CDER on CMC conference in Bethesda, Md. Many of the shortcomings reflect poor quality practices and represent cost savings opportunities for the quality by design paradigm. Estimates are from McKinsey Operations Practice.

| Measure                                | Pharma     | Automotive | Aerospace  | Computer   | Consumer<br>Packaged Goods |
|----------------------------------------|------------|------------|------------|------------|----------------------------|
| Overall<br>equipment<br>effectiveness  | 10% to 60% | 70% to 85% | 50% to 70% | 80% to 90% | 70% to 90%                 |
| Annual<br>productivity<br>improvement  | 1% to 3%   | 5% to 15%  | 5% to 10%  | 1% to 3%   | 5% to 15%                  |
| First-pass yield<br>– zero defects     | 60%        | 90% to 99% | 70% to 90% | 90% to 99% | 90% to 99%                 |
| Production lead<br>times in days       | 120 to 180 | 1 to 7     | 7 to 120   | 5 to 10    | 3 to 7                     |
| Finished goods<br>inventory in<br>days | 60 to 90   | 3 to 30    | 3 to 30    | 5 to 50    | 10 to 40                   |
| Labor value-add<br>time                | 20%        | 60% to 70% | 60% to 70% | 60% to 70% | 60% to 90%                 |
| Direct/indirect<br>labor ratio         | 1:1        | 10:1       | 10:1       | 10:1       | 10:1                       |

Gold Sheet, Jan 2009

#### States of Product Capability by Industry

| Level of Understanding &<br>Knowledge        | σ Capability | Industry                                                                                           |
|----------------------------------------------|--------------|----------------------------------------------------------------------------------------------------|
| First Principles & Mechanistic<br>Modeling   | ≥6           | Aerospace<br>Cr Goal for Pharmaceuticals<br>Semi-conductor<br>Potato Chip Manufacturers (2004 WSJ) |
| Empirical Modeling                           | 3-5          | Dharmacouticals w/ Increation                                                                      |
| Correlative Understanding<br>(Trial & Error) | 2-3          |                                                                                                    |
| Descriptive Knowledge                        | <2           | Pharmaceuticals                                                                                    |

# **Drivers for Change**

#### **Financial**

- Decreased spending for development/redevelopment of products
- Decreased cost to maintain marketed products
- Reduced rework or scrap of product
- Prioritized spending for development and commercialized products
- Partner of Choice

#### Regulatory

- Regulatory relief
- Reduced submission review time
- Enhanced submission quality, with improved development focus
- Consistent with FDA & EU desired state
- Aligned with AAPS, ICH, ASTM, etc.

#### Quality

- Robust products and processes leading to reduced rework or scrap
- Predictive processes
- Prioritized continuous improvement
- Rapid troubleshooting
- Reduced, acceptable compliance risk

#### **Product Development & Commercial Support**

- Resources focused on key development tasks
- Efficient development processes
- Better definition of development & commercial risks

### Status of Industry Relative to QbD



Time

Martin Warman, 2009 Gartner Hype Model

### **Recent ICH/FDA Regulatory Trends & Guidance Changes**

| Item                                             | Status              |
|--------------------------------------------------|---------------------|
| FDA Critical Path Initiative & Quality by Design | March 2004          |
| ICH Q8 – Pharmaceutical Development (Science)    | Effective May 2006  |
| ICH Q9 – Quality Risk Management                 | Effective June 2006 |
| ICH Q10 – Pharmaceutical Quality<br>Systems      | ICH Step 2          |

### Achieving Quality by Design

| Level of Understanding &                   | Methodologies                                                                                                   |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Kilowieuge                                 | Risk Management                                                                                                 |  |
| First Principles &<br>Mechanistic Modeling | In Silica Development Using Theoretical/Predictive Models Characterization Of<br>Raw Materials (Especially API) |  |
|                                            | Predictive Manufacturing Processes                                                                              |  |
|                                            | Connecting Investigations On A Product Throughout Its Lifecycle                                                 |  |
|                                            | Exploring Empirical Models For Potential Mechanistic/Theoretical Mechanisms                                     |  |
| Empirical Modeling                         | Design of Experiments, Interactions Investigated & Understood                                                   |  |
|                                            | EVOPS                                                                                                           |  |
|                                            | MVDA/MSPC                                                                                                       |  |
|                                            | Expert Systems                                                                                                  |  |
| Correlative Understanding                  | One Factor at a Time Development, No Interaction Effects                                                        |  |
| (Trial & Error)                            | Detailed Flowcharts with Process Control Limits                                                                 |  |
|                                            |                                                                                                                 |  |
| Descriptive Knowledge                      | Observational                                                                                                   |  |
|                                            | High-level process flow charts                                                                                  |  |
|                                            | Descriptive text/narration                                                                                      |  |

## **Comparing Traditional vs QbD Lifecycles**

| Aspects               | Traditional                              | QbD                                              |
|-----------------------|------------------------------------------|--------------------------------------------------|
| Pharma Development    | Empirical, Univariate                    | Systematic, Multivariate                         |
| Manufacturing Process | Fixed Process & Raw Materials            | Adjustable W/in Design Space                     |
| Process Control       | Offline, Slow                            | Online, Fast                                     |
| Specifications        | To Achieve QC                            | Based On Desired Product<br>Performance          |
| Control Strategy      | By Intermediate & End-Product<br>Testing | Risk-based; Ctls Upstream, Real-<br>time Release |
| Lifecycle Mgmt        | Reactive, OOS, Post-Approval<br>Changes  | Proactive, Continuous<br>Improvement             |

Helen Winkle, FDA Sept 24, 2007

### What Does QbD Look Like?





### Scope of Workshop

- A Potential Workflow for QbD
- Analytical Development
- API Development
- Drug Product Development
  - Linking API to DP Development
- Commercialization

# DIKW Knowledge Management Model



Fourth Generation R&D: Managing Knowledge, Technology and Innovation,

W.L. Miller and L. Morris, John Wiley & Sons, 1999. p 87.

# **Overview**

- Concepts
  - Making connections from methods to API to Drug Product
  - Continuum
  - From R&D to commercialization
  - Traditional vs New Methods of Setting Specifications
  - Ansel Ford
    - Automatic transmissions

# **Process Understanding**

- A process is well understood when:
  - all critical sources of variability are identified and explained
  - quality is designed into the process so that variability is managed by the process
  - product quality attributes can be accurately and reliably predicted
- Process understanding is inversely proportional to risk

# Workflow

#### Objectives

- Target Product Profile
- Critical Quality Attributes
- API Characterization & Prior Knowledge
- Analytical Methods
- Proposed API, Formulation & Manufacturing Processes
- Determining Potential C&E Relationships
- Risk Management
- Investigation of Raw Materials & Process Parameters
- Design Space (API & DP)
- Control Strategy (API & DP)
- Validation
- Commercialization & Continuous Improvement

#### Deliverables

- TPP Profile
- List of Potential CQAs
- Link API Properties to Dosage Form
- Rugged/Robust Methods
- ID Potential Critical RMs and PPs
- Det. A Priori Risk from Prior Knowledge
- Risk Assessment
- Develop, Optimize, Verify Design
- Design Space Documents
- Control Strategy Documents
- Continuous Verification Strategy
- Quality Systems working together, leading to Continuous Improvement

#### **Bold Typeface: Covered in Detail**

Quality by Design: High Level Overview

# Summary of Workflow

- Science
- Risk Management
- Quality Systems

| Targeted Pro                                    | oduct Profile (TPP)                                         |                   |
|-------------------------------------------------|-------------------------------------------------------------|-------------------|
|                                                 | Link Marketing to Efficacy/Safety                           |                   |
| Clinical F                                      | Requirements                                                |                   |
|                                                 | Link CQAs to Clinical Performance                           |                   |
| Critical Qu                                     | *<br>uality Attributes                                      |                   |
|                                                 | Link Critical Raw Material &                                |                   |
|                                                 | Process Parameters to CQAs                                  |                   |
| Drug Substance<br>Properties &                  | e Physicochemical<br>Prior Knowledge                        | •]                |
|                                                 | Link API Properties to Dosage For                           | n Design          |
| Dremond Al                                      | V<br>Di Formulation 8                                       |                   |
| Manufactu                                       | ring Processes                                              |                   |
|                                                 | Identify & Define Critical Raw Mate<br>& Process Parameters | rial              |
| Dotorminatio                                    | t<br>n of Causo & Effoct                                    |                   |
| Rel                                             | ationships                                                  |                   |
|                                                 | Determine a Priori Risk<br>from Current Understanding       |                   |
| → Risk-Base<br>(Risk                            | d Classification<br>Evaluation)                             |                   |
|                                                 | Improve Understanding<br>& Reduce Risk                      |                   |
| Investigation of Raw Ma                         | terials & Process Parameters                                |                   |
| 1. De<br>2. Op<br>3. Ve                         | velop Concepts<br>vitimize Design<br>vity Design            |                   |
| Justified Formulation                           | Reliable Justified Pr<br>Manufacturing                      | rocess            |
|                                                 |                                                             |                   |
| Formulation Control Str<br>Design Space Process | ategy to Assure Pr<br>Performance Desig                     | ocess<br>gn Space |
| & Proc                                          | luct Quality By                                             | Unit Op           |
|                                                 | "Validated" Product Through                                 | _                 |
| N                                               | DA/PAI                                                      |                   |
|                                                 | Technology Transfer                                         |                   |
|                                                 | Learning &                                                  |                   |
| AI                                              | PI & DP                                                     |                   |
| Li<br>Man                                       | agement Knowledge Manageme                                  | nt                |
|                                                 | Flexible Filings                                            |                   |
|                                                 | 7                                                           |                   |
|                                                 | *                                                           |                   |
| Product D                                       | iscontinuation                                              |                   |



# **Analytical Methods**

- Objectives
  - Stable, robust, rugged, reproducible methods
- Science
  - Analytical Method Development Strategy
    - Measurement Systems Analysis
      - Gage R&R
      - Taguchi Method
        - Addresses centering a process as well as minimizing impact of noise variables



- One form of Measurement Systems Analysis (MSA)

# Future Sampling

- What is the right sampling frequency for development
- Impact of method bias & variability on confidence of measures

















# **Analytical Methods**

Link to presentation #2



# API Development

Link to presentation #3

# Drug Product Development

Link to presentation #4