- 1 28 July 2017 - 2 EMA/572054/2016 DRAFT FOR PUBLIC CONSULTATION # 3 Guideline on good pharmacovigilance practices (GVP) 4 Product- or Population-Specific Considerations IV: Paediatric population | Draft finalised by the Agency in collaboration with Member States | 6 July 2017
25 July2017
28 July 2017
2 August 2017 | | |---------------------------------------------------------------------------|-------------------------------------------------------------|--| | Draft agreed by the EU Network Pharmacovigilance Oversight Group (EU-POG) | | | | Draft adopted by Executive Director | | | | Release for public consultation | | | | End of consultation (deadline for comments) | 13 October 2017 | | | Anticipated date for coming into effect after finalisation | Q1 2018 | | Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>gvp@ema.europa.eu</u> 6 # Table of contents 36 | 8 | P.IV.A. | Introduction | 3 | |----|-------------|-----------------------------------------------------------------|----| | 9 | P.IV.A.1. | Pharmacovigilance aspects specific to the paediatric population | 4 | | 10 | P.IV.A.1.1 | . Susceptibility to adverse reactions | 4 | | 11 | P.IV.A.1.2 | . Limited numbers of subjects in paediatric clinical trials | 5 | | 12 | P.IV.A.1.3 | . Medication errors | 5 | | 13 | P.IV.A.1.4 | . Off-label use | 6 | | 14 | P.IV.A.1.5 | . Clinical presentation of adverse reactions | 6 | | 15 | P.IV.B. | Structures and processes | 6 | | 16 | P.IV.B.1. | Risk management plan | 6 | | 17 | P.IV.B.2. | Management and reporting of adverse reactions | 7 | | 18 | P.IV.B.2.1 | . Age information | | | 19 | P.IV.B.2.2 | . Other specifically relevant information | 8 | | 20 | P.IV.B.3. | Periodic safety update reports | 9 | | 21 | P.IV.B.4. | Post-authorisation safety studies (PASS) | 10 | | 22 | P.IV.B.5. | Signal management | 11 | | 23 | P.IV.B.6. | Safety communication | 12 | | 24 | P.IV.C. | Operation of the EU network | 13 | | 25 | | Roles and responsibilities | | | 26 | | . Marketing authorisation holder and applicant in the EU | | | 27 | | .1. Risk management plan (RMP) | | | 28 | P.IV.B.6.1 | .2. Periodic safety update report (PSUR) | 13 | | 29 | P.IV.B.6.1 | .3. Post-authorisation safety study (PASS) | 13 | | 30 | P.IV.B.6.2 | . European Medicines Agency | 14 | | 31 | P.IV.B.6.2 | .1. The Paediatric Committee (PDCO) | 14 | | 32 | P.IV.B.6.2 | .2. Interaction between the PDCO and the PRAC | 14 | | 33 | P.IV.B.6.2 | .3. Paediatric investigation plan in the EU (PIP) | 14 | | 34 | P.IV.C.2. S | Safety communication in the EU | 15 | | 35 | | | | Guideline on good pharmacovigilance practices (GVP) – P. IV EMA/572054/2016 DRAFT FOR PUBLIC CONSULTATION # P.IV.A. Introduction - 38 The paediatric population is defined in the European Union (EU) as that part of the population aged - 39 between birth and 18 years. The paediatric population encompasses several subsets. The applied age - 40 classification of paediatric patients is: - pre-term and term neonates from 0 to 27 days; - infants (or toddlers) from 1 month to 23 months; - children from 2 years to 11 years; and - adolescents from 12 to less than 18 years¹. - 45 Adverse reactions in the paediatric population need a specific evaluation, as they may substantially - differ in terms of frequency, nature, severity and presentation from those occurring in the adult - 47 population (see P.IV.A.1.). The importance of performing specific research in pharmacovigilance - 48 targeting the paediatric population² has been recognised and established, and modalities of data - 49 collection should take into account that medicines in the paediatric population have a different - 50 utilisation pattern and often are used off-label. - Regulation (EC) No 1901/2006³, referred to as the 'Paediatric Regulation', had put particular emphasis - 52 on the collection of safety data in the paediatric population, including data on possible long-term - effects. Also, as mandated by this regulation, the European Medicines Agency (the 'Agency') issued the - 54 Guideline on the Conduct of Pharmacovigilance for Medicines Used in the Paediatric population - 55 (EMEA/CHMP/PhVWP/235910/2005), which came into effect in 2007 with the implementation of the - 56 Paediatric Regulation. - 57 More recently, a number of changes in the scientific and regulatory environment have had direct - 58 consequences for the conduct of pharmacovigilance in the paediatric population. - 59 Since the Paediatric Regulation came into force in 2007, the development of new paediatric medicines, - and the paediatric development of medicines that were already marketed, have both increased. This is - 61 reflected by a growing number of paediatric indications for innovative medicines, newly authorised - 62 paediatric age-specific formulations, and paediatric indications for medicines with an existing - 63 marketing authorisation⁴ for adults. - New pharmacovigilance legislation (Regulation (EU) No 1235/2010 and Directive 2010/84/EU) came - 65 into force in the EU in July 2012, providing for strengthened pharmacovigilance processes for all - 66 medicines, irrespective of their authorised indication(s) and population(s). This new legislation - 67 introduced changes that are particularly relevant for the paediatric population, in particular the - 68 extended definition of adverse reaction to include harm resulting from overdose, misuse, abuse and - 69 medication errors (see GVP Annex I) and the related broadening of the scope of pharmacovigilance to ¹ European Commission; Communication From The Commission-Guideline on the format and content of applications for agreement or modification of a paediatric investigation plan and requests for waivers or deferrals and concerning the operation of the compliance check and on criteria for assessing significant studies (2014/C 338/01): http://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/2014 c338 01/2014 c338 01 en.pdf. ² Impicciatore P, Choonara I, Clarkson A, et al. Incidence of adverse drug reactions in paediatric in/out-patients: a systematic review and meta-analysis of prospective studies. Br J Clin Pharmacol. 2001; 52: 77-83 ³ Regulation (EC) No 1901/2006 of the European Parliament and of the Council on medicinal products for paediatric use and Regulation (EC) No 1901/2006 of the European Parliament and of the Council on medicinal products for paediatric use and amending Regulation (EC) No 1768/92, Directive 2001/20/EC and Regulation (EC) No 726/2004: http://ec.europa.eu/health/files/eudralex/vol-1/req 2006 1901/req 2006 1901 en.pdf. Report from the Commission to the European Parliament and the Council: Better Medicines for Children - From Concept to ⁴ Report from the Commission to the European Parliament and the Council: Better Medicines for Children - From Concept to Reality General Report on experience acquired as a result of the application of Regulation (EC) No 1901/2006 on medicinal products for paediatric use (COM/2013/0443): http://ec.europa.eu/health/files/paediatrics/2013 com443/paediatric report-com(2013)443 en.pdf. - 70 include evaluation of risks associated with medicines when used outside the terms of the MA including - 71 'off-label-use'. - Subsequent to the changes in the scientific and regulatory environment, the 'Guideline on the Conduct - of Pharmacovigilance for Medicines Used by the Paediatric Population' - 74 (EMEA/CHMP/PhVWP/235910/2005 rev.1) needed to be updated and the revised guidance is now - 75 provided in this Product-Specific Considerations Chapter P.IV of GVP. This guidance should therefore be - 76 read in conjunction with Title IV of the Paediatric Regulation and its Article 34, Regulation (EC) No - 77 726/2004 and Directive 2001/83/EC. - 78 Taking into account that the general guidance on pharmacovigilance processes in the EU is provided in - 79 GVP Modules I to XVI, the creation of this guidance as a GVP Chapter aims at integrating paediatric - 80 pharmacovigilance with the structures and processes for pharmacovigilance overall. - P.IV therefore applies in conjunction with the GVP Modules I to XVI. - 82 In addition, the guidance in ICH E11 Guideline on Clinical Investigation of Medicinal Products in the - 83 Paediatric Population⁵ applies. - 84 The guidance contained in this Chapter is addressed to marketing authorisation applicants and holders, - 85 the competent authorities in Member States and the Agency. It covers all paediatric age groups and - 86 should additionally be of interest both to parents/carers, healthcare professionals, patient/consumer - 87 organisations and organisations of national healthcare systems in Member States. - 88 The paediatric use of vaccines and safety surveillance of paediatric outcomes after exposure to - 89 medicines in utero are outside the scope, as such guidance is/will be provided in GVP P.I on vaccines - 90 for prophylaxis against infectious diseases and GVP P.III on pregnancy and breastfeeding. ## 91 P.IV.A.1. Pharmacovigilance aspects specific to the paediatric population #### P.IV.A.1.1. Susceptibility to adverse reactions - 93 Paediatric subjects differ substantially from adults due to the ongoing neurobehavioural development - 94 and physical growth, including internal organ maturation. Furthermore, within the paediatric population, - 95 different maturation milestones are likely to alter the susceptibility of paediatric sub-population to - 96 specific adverse reactions and the way individuals react to them (e.g. (pre)term neonates to toddlers - 97 or pre-/post-pubertal children). This is based on distinct pharmacokinetic and pharmacodynamic - 98 characteristics in the respective paediatric age groups. - Various factors might influence the susceptibility of the paediatric population to adverse reactions for a given medicine, compared to the adult population. They include: - changes in the maturation of organ systems (e.g. skin, airways, kidney, liver, gastro-intestinal, brain and blood-brain-barrier as well as drug transporters) during growth and their development (ontogeny) leading to a different pharmacodynamic and pharmacokinetic profile of a medicine as known in adults; - rapid changes in body mass and morphology that can reduce the therapeutic window, leading to increased susceptibility to dose-related adverse reactions; - immaturity of many organ systems that might lead to different vulnerability to adverse reactions in some paediatric subpopulations, such as preterm neonates; 108 101 102103 104 105 106 107 ⁵ http://www.ema.europa.eu - presence of specific pharmacologically active excipients⁶ that in the paediatric population may have unintended effects, leading to a risk of adverse reactions; - impact of short and long-term effects on the developing organs and organ-systems, e.g. on neurological, skeletal growth and sexual maturation (such effects may only become obvious, visible or identifiable in the long-term, i.e. with remarkable delay, in adolescence or adulthood). - 114 These considerations highlight the importance of taking into account aspects related to organ - maturation and developmental pharmacology⁷ when performing pharmacovigilance activities for the - paediatric population and imply that the value of long-term follow-up should be considered - 117 systematically. #### P.IV.A.1.2. Limited numbers of subjects in paediatric clinical trials - The well-known limitations of clinical trials in the generation of data on the safety profile of a medicine - are even more pertinent for the paediatric population. Due to the challenges of conducting clinical trials - in the paediatric population, the amount of dedicated information on the safety of medicines in - neonates, children and adolescents at the time of marketing authorisation can be very limited. - The small numbers of paediatric patients that is possible to enrol in paediatric clinical trials often does - not allow for a statistically-powered design for demonstration of efficacy. This has also an impact on - the potential of clinical trials to gather sufficient numbers for generating dedicated information on - incidence of adverse reactions in the same fashion of adult clinical trials. - Due to low numbers of patients enrolled in paediatric clinical trials and/or to the long latency between - 128 exposure to the medicinal product and the onset of the reaction, adverse reactions occurring at a - frequency of less than common may not be detectable during the pre-authorisation phase. - 130 Furthermore, the size of the paediatric safety database available for a given medicine, in comparison to - what is available for adults, can be scarce or a paediatric safety database may not even be available. ### P.IV.A.1.3. Medication errors - A medication error is an unintended failure in the drug treatment process that leads to, or has the - potential to lead to, harm to the patient (see GVP Annex I). Medication errors can occur at the time of - prescribing, dispensing, storing, preparing and administering a medicine. In comparison to the adult - population, the impact of medication errors on the paediatric population can be much more serious. - 137 Paediatric patients are up to three times more likely to experience potential adverse reactions due to - medication errors than adults^{8,9}. Adverse reactions deriving from medication errors may be - preventable and it is possible to enact a series of error reduction strategies¹⁰. 140 132 - 141 Historically there has been a lack of development of medicines for paediatric patients and of paediatric - dosing guidance in the product information, leading to medication errors. The Pharmacovigilance Risk - 143 Assessment Committee (PRAC) Good Practice Guide on Medication Errors¹¹ provides guidance on the ¹¹ <u>www.ema.europa.eu</u> ⁶ Guideline on pharmaceutical development of medicines for paediatric use (EMA/CHMP/QWP/805880/2012 Rev. 2): http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_quideline/2013/07/WC500147002.pdf. ⁷ Tayman C., Rayyan M., Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011; 16(3):170-184. ⁸ Kaufmann J. et al. Medication Errors in Pediatric Emergencies: a systematic analysis. Deutsches Ärzteblatt International. 2012;109(38):609-616. doi:10.3238/arztebl.2012.0609. ⁹ Kaushal R. et al. Medication errors and adverse drug events in pediatric inpatients. JAMA. 2001;285(16):2114-2120. ¹⁰ Marlene R Miller, Karen A Robinson, Lisa H Lubomski, Michael L Rinke, Peter J Pronovost. Medication errors in paediatric care: a systematic review of epidemiology and an evaluation of evidence supporting reduction strategy recommendations Qual Saf Health Care 2007;16:116-126. doi: 10.1136/qshc.2006.019950 ¹¹ MARKY CARS CURPAGE 12. - 144 systematic assessment and prevention of medication errors throughout the product life-cycle, with - additional considerations in paediatric patients. #### 146 P.IV.A.1.4. Off-label use - 147 Off-label use relates to situations where a medicinal product is intentionally used for a medical purpose - not in accordance with the terms of the marketing authorisation, and this includes use in non- - authorised paediatric age categories (see GVP Annex I). - 150 Off-label use of medicines that did not have an authorised indication in paediatric patients had been a - widespread practice, due to the fact that necessary therapy could not be withheld from the paediatric - population. This overall exposes paediatric patients to a potentially increased risk to develop adverse - reactions, due to the lack of knowledge on the medicine's safety profile in this population. - 154 With the developments described in P.IV.A., the situation nowadays has improved, but there are still a - number of paediatric conditions where the need of specific paediatric medicines is not met. - 156 Furthermore, due to the limited availability of medicines with an authorised paediatric indication or an - age-appropriate formulation, paediatric patients are likely to be treated with inappropriate formulations - or dosages that are inferred from adult patients solely based on weight. This can expose patients to - over- or underdosing which, in turn, may lead to an increased risk of adverse reactions and a lack of - therapeutic effect. This risk is further increased in more vulnerable paediatric groups such as neonates. - 161 In addition, even medicines that have an authorised paediatric indication can be used off-label when - they are prescribed in non-authorised paediatric age groups. ## P.IV.A.1.5. Clinical presentation of adverse reactions - The clinical presentation of adverse reactions in neonates and children may be different from adults. - Most symptoms that are dependent on patient communication (e.g. nausea, pain, hallucinations) were - under-represented in younger or mentally disabled children¹² in a large single centre study. - In addition, some of the most common adverse drug reaction types observed in inpatients/outpatients - infants and toddlers, such as vomiting and diarrhoea as well as dizziness or crying are non-specific and - might be ascribed to an underlying illness in the first place. This may mean that these events are less - 170 likely to be assessed as adverse reactions. # P.IV.B. Structures and processes ## P.IV.B.1. Risk management plan - 173 The current requirements for risk management plan (RMP) (see also EMA Guidance on Format of the - 174 Risk Management Plan in the EU) in GVP Module V include considerations applicable to the paediatric - 175 population 163 171 - 176 In general, the knowledge gained from the adult population when available should inform best use - 177 of data collection methods and risk minimisation tools when approaching risk management for - 178 paediatric subjects¹³. The limitation of methods used to minimise risk of adverse reactions in the adult - 179 population need to be appraised and some approaches should be subject to adaptation to target - 180 paediatric patients more effectively. ¹² Smyth RMD, Gargon E, Kirkham J, Cresswell L, Golder S, Smyth R, et al. Adverse drug reactions in children: a systematic review. PLOS ONE. 2012;7:e24061,19. ¹³ Hartford CG1, Petchel KS, Mickail H, Perez-Gutthann S, McHale M, Grana JM, Marquez P. Pharmacovigilance during the pre-approval phases: an evolving pharmaceutical industry model in response to ICH E2E, CIOMS VI, FDA and EMEA/CHMP risk-management guidelines. Drug Saf. 2006;29(8):657-673. - 181 However, there might be no previous experience in adults to build upon when a medicine is authorised - for adults and paediatric patients at the same time, or it is licensed exclusively for paediatric patients, - since use in real world has not yet taken place. - 184 For medicinal products with a paediatric indication, a number of safety topics are of particular interest - for the risk identification discussion in the RMP and they should be discussed if they lead to possible - specific risks. Particularly important aspects for paediatric subjects are: - age-related shifts in the interaction of the medicinal product and its target organs or tissues (including taking into account development and maturation of tissues like in the gastro-intestinal tract); - ontogeny of the absorption, distribution, metabolism and excretion (ADME) of the medicine, including intra-individual structures such as the blood-brain barrier; - age-related shifts in metabolic pathways related to ontogeny of ADME; - potential adverse effects due to different exposure to metabolites as opposed to the adult age. - 194 Evaluation of these aspects can help in assessing whether a risk of adverse reactions for a given - medicine might differ from the adult population and whether its pharmacological properties justify any - 196 possibility of developmental risk. 212 - 198 Results of juvenile animal toxicology studies, based on the current understanding of their predictive - value in terms of subsequent effects in the paediatric population¹⁴, can also provide a useful support in - 200 prioritising pharmacovigilance research questions. - 201 If a specific paediatric risk is highlighted and included as a safety concern in the safety specification of - the RMP, consideration should be given as to whether a paediatric post-authorisation safety study - 203 (PASS) (see P.IV.B.4.) would be an appropriate tool to further characterise this risk. The conduct of a - 204 PASS in the paediatric population, or to include paediatric subjects in the population studied in a PASS, - 205 may be of particular value when: - the medicine is authorised for both the adult and paediatric population at the same time, to 207 evaluate risks when safety information is more limited in the paediatric population or in one of its 208 subsets; - it is anticipated that effects on development can only manifest years after medicine exposure; - the paediatric clinical development and the application for a paediatric indication¹⁵, relies heavily on extrapolation of adult or paediatric sub-group efficacy data. # P.IV.B.2. Management and reporting of adverse reactions - 213 Spontaneous reporting of adverse reactions collected during the post-authorisation phase may be the - 214 only available primary source of information on adverse reactions occurring in the paediatric population - and therefore remains, together with signal detection (see P.IV.B.2.) the most important - 216 pharmacovigilance tool so far. http://www.ema.europa.eu/docs/en GB/document library/Scientific guideline/2009/09/WC500002941.pdf ²⁵ ICH Topic M 3 (R2) Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals. (CPMP/ICH/286/95): ²⁶ International Conference on Harmonisation ICH Topic S 5 (R2). Detection of Toxicity to Reproduction for Medicinal Products & Toxicity to Male Fertility. (CPMP/ICH/386/95): http://www.ema.europa.eu/docs/en GB/document library/Scientific guideline/2009/09/WC500002809.pdf. ¹⁵ EMA/199678/2016 Reflection Paper on Extrapolation of Efficacy and Safety in Paediatric Medicine Development. http://www.ema.europa.eu - The legal requirements and general guidance for the management and reporting of adverse reactions - 218 to be followed are described in GVP Module VI. - 219 Currently, the reporting requirements of individual case safety reports (ICSRs) for the paediatric - 220 population, including those related to the off-label use, are not different from adults. - The generation of knowledge of adverse reactions reported in the framework of off-label use in the - 222 paediatric population is extremely important and could potentially serve as a substantial part of - adverse reactions collected in the paediatric population. - 224 Reporting systems should take this aspect into account to support generation of hypothesis on whether - off-label use can be an independent risk factor in developing adverse reactions. - 226 GVP Module VI includes guidance on how to collect and assess information on off-label use and - potential or actual harm and enables the collection of important information on the safety of medicines - in the paediatric population, where medicines are often used off-label. - 229 However, those managing ICSRs and assessing risks of medicine use in paediatric patients should have - appropriate skills to address the aspects specific to this population (see P.IV.A.1.), including to identify - and obtain specific information needed for adequate signal identification, case review and risk - 232 assessment. #### P.IV.B.2.1. Age information - 234 Information on the patient's age in ICSRs should be recorded as accurately as possible (e.g. - 235 gestational age for pre-term neonates, in completed days for neonates, days or months for infants and - toddlers, and completed years or months for children and adolescents). - 237 Useful data retrieval and analysis can only be performed if age information is reported and available, - and this information should be available in the structured data fields of the ICSR (rather than in the - 239 narrative). - 240 As far as possible, the ICSRs should indicate either: - the age at time of onset of reaction or the date of birth; or - affiliation to one of the five paediatric age groups (see P.IV.A.) if it is not possible to obtain the exact age or date of birth or if personal data protection legislation prevent this in order to identify - 244 the patient, in particular when the medical condition is rare. - 245 If no age-related information is provided by the initial reporter, the competent authority and the - 246 marketing authorisation holder should take follow-up action as appropriate, in order to obtain age- - 247 related data. 256 - Additionally, information on major developmental parameters like prematurity, pubertal development - 249 stage should be collected and reported, as applicable. In this context, information on maternal and - 250 paternal exposure during conception and on pregnancy may also be of relevance since they can - constitute independent risk factors for the development of adverse reactions. - 252 For neonates and infants, the gestational age of the child at birth should also be recorded. Maturation - at that time of life is rapidly evolving and cellular metabolism, receptor expression, receptor activity, - enzymatic activity interrelate strongly with growth. Therefore, precise information can reveal factors - leading to a different pattern in susceptibility to an adverse reaction. # P.IV.B.2.2. Other specifically relevant information 257 Paediatric ICSRs should also include high quality data on: - indication or intention of use; - formulation and dosage form; - dose (including individual and total daily dose), duration and circumstances of exposure, including information needed to establish whether the adverse reaction has developed in a framework of medication errors or off-label use; - weight and height, as these can vary considerably across an age group and influence the susceptibility to an adverse reaction. - The ICSRs should be as complete as possible regarding the concerned data fields and be subject to - follow-up requests if these were missing, as appropriate. The robustness of the output and conclusion - of the signal validation and assessment (see P.IV.B.2.) is directly related to the quality of the - 268 information included in the ICSR. - 269 In the case of products of low usage in the paediatric population, signal detection systems could prove - less effective. A different, more proactive approach may be needed to conduct pharmacovigilance for - low usage products, for example using real-life data from patients' records or disease databases and - active surveillance systems. Clinical specialist networks and paediatric clinical trial networks may also - 273 be a useful resource to be consulted in this context such as those being part of the European network - of paediatric research at the European Medicines Agency (Enpr-EMA). # P.IV.B.3. Periodic safety update reports - 276 The requirements for periodic safety update reports (PSUR) included GVP Module VII should be - 277 followed. - When a paediatric indication has been authorised, ongoing monitoring of the risk-benefit balance - 279 specifically for this indication throughout the product life-cycle via the PSUR should be performed, as - 280 PSURs are an important tool to collect and cumulatively analyse information on paediatric use. PSURs - should explicitly address any new safety issue identified in the paediatric population overall as well as - in age groups and by indication. - Assessing and discussing the use of medicines and their effects in real life is the purpose of the PSUR, - which should include the paediatric population specifically (unless exempted from PSUR submission). - 285 This should be done not only when a medicine has a paediatric indication but also when: - there is evidence of substantial paediatric use in the absence of a paediatric indication (or on the use of not age appropriate formulation) and there are critical gaps in knowledge for specific safety issues; or - paediatric adverse reactions have been previously reported. - 290 Furthermore, information on: - the number of paediatric patients exposed during the reporting period and the method of exposure calculation; and - significant findings arising from paediatric clinical trials; - 294 should be included in the PSUR. - 295 The addition of a paediatric indication to an existing marketing authorisation means that the population - using the medicine will be widened. In some cases it would be beneficial to gather further insight on - 297 such widened use and this may lead to a requirement for a higher frequency of PSUR submissions, which has to be considered and agreed at the time of the granting of the extension of the paediatric indication. # P.IV.B.4. Post-authorisation safety studies (PASS) - The requirements for the design and conduct of post-authorisation safety studies (PASS) in GVP Module VIII should be followed. - For the paediatric population, PASS are important complements to the research already conducted as part of pre-authorisation development¹⁶, as they can fill potential gaps in the knowledge of the safety profile of the medicine and complement other activities such as signal detection performed on spontaneous reports. Some types of PASS such as drug utilisation studies may be useful in describing how the medicine is used in the paediatric populations in real-life clinical practice, e.g. how frequently - and which paediatric groups are treated. Furthermore, PASSs are important to understand the effectiveness of risk minimisation measures. - The design and conduct of PASS in the paediatric population should take into account the specific - 311 characteristics of the paediatric (sub-)population under investigation (P.IV.A.1.), that may lead in - 312 confounding due to factors relating to child development, imprecise diagnostic coding and medical - 313 record limitations, as well as lack of consensus about best research standard for paediatrics in some - areas. Challenges arising from specific ethical and feasibility aspects could compromise PASSs - conduction. Therefore such aspects should also be addressed in a PASS protocol demonstrating that - 316 they will be appropriately managed. 300 - 317 Disease or treatment registries and national healthcare databases can be used for the conduct of non- - interventional PASS, but because of the inclusion of paediatric patients in these types of data sources - can be limited, multi-database approaches should be considered to achieve appropriate study sizes. - 320 In many cases high level planning for such studies should already be considered at the time of - 321 submission of a Paediatric Investigation Plan (PIP, see P.IV.B.6.2.3), to promote continuity between - 322 the safety data generation in the pre- and post-marketing phase. An early planned study would - facilitate understanding on possible types of data that can be gathered after marketing authorisation - and can support in defining main characteristics and requirements for paediatric registries that can be - 325 set-up more promptly, enabling to address research questions arisen in the pre-marketing phase. - The template for PASS protocols (see GVP Module VIII, Guidance for the Format and Content of the - Protocol of Non-Interventional Post-Authorisation Safety Studies¹⁷) should be completed, taking into - 328 account specifics for paediatrics as follows: - template heading 8 "Research question and objectives": this may relate to alterations in somatic growth, puberty, cognitive or physical development; - template heading 9.4 "Data sources": if information from other family members or from external data sources, such as census data, is needed, the linkages to external data sources and the sources should be described (e.g. exposures and events in neonates are often included in the mother's clinical record rather than in a separate record for the child); - template heading 9.7 "Data analysis": the statistical methods may need to be adapted to account for paediatric-specific aspects (e.g. the correlation between repeated measurements such as 17 www.ema.europa.eu - 331 332 333 334 335 ¹⁶ Andrews EB, Moore N, eds. Mann's Pharmacovigilance. 3rd ed. Wiley-Blackwell.; 2014. weight and height)in the same child which may vary in short periods of time; changes in recommended dosing as the child grows). # P.IV.B.5. Signal management 339 - 340 A signal is information arising from one or multiple sources, including observations and experiments, - 341 suggesting a new potentially causal association, or a new aspect of a known association between an - intervention and an event or set of related events, either adverse or beneficial, that is judged to be of - sufficient likelihood to justify verificatory action (see GVP Annex I). Guidance for signal management - 344 as provided in GVP Module IX should be followed. - 345 Signal management activities focussing on the paediatric population should take into account the - 346 expected differences in this age group compared to adults, as previously discussed, due to the - different utilisation, prescription, adverse reaction susceptibility and clinical presentation. - Further, it has been shown that the types of medicines and the suspected adverse reactions commonly - reported in spontaneous reports, differ substantially between paediatric patients and adults, not only in - 350 terms of reaction types and medicinal products involved, but also in the fact that they are more - concentrated around limited sets of reaction types and medicinal product type, such as vaccines¹⁸. - Hence, performing paediatric statistical signal detection may benefit from tailored approaches as well - as specific tools to study a heterogeneous population, weighing whether age group may be a - 354 confounder or an effect modifier. - 355 Such tailored approaches aim firstly at addressing whether an adverse reaction is new or more severe - 356 than previously known, in one or all paediatric age groups. - 357 Qualitative differences in usage of medicines and reporting of adverse reactions have suggested that - 358 paediatric ICSRs should be analysed separately from ICSRs about adult patients in the systems like the - 359 electronic Reaction Monitoring Reports (eRMRs) produced by EudraVigilance¹⁹. - 360 Another approach to enhance signal detection in the paediatric population may be targeting reported - medical events that are particularly relevant in this population, i.e. adverse reactions that are more - 362 frequently associated with a fatal or more serious outcome when they occur in paediatric patients as - 363 compared to adults. - As for the general population, statistics of disproportionate reporting (see GVP Module IX Addendum I) - 365 should be calculated using only ICSRs about paediatric patients to increase the ability to detect - 366 paediatric signals of disproportionate reporting (SDR) from spontaneous databases. Sub-group analysis - 367 by age and comparison of the disproportionality statistics in paediatric patients versus adults can help - 368 to determine whether or not a suspected adverse reaction is likely to be more frequent in paediatric - 369 patients. 374 - 370 Additionally, the signalling threshold based on the number of ICSRs received, should be lower than - that for the whole population. As the number of cases is usually small, there needs to be a high index - of suspicion, comprehensive assessment of individual cases, and a follow-up strategy should be in - place to consistently complete ICSRs with essential information. 375 Since some adverse reactions might be age-specific, a stratification of the ICSR analysis by age sub- Guideline on good pharmacovigilance practices (GVP) – P. IV EMA/572054/2016 DRAFT FOR PUBLIC CONSULTATION ¹⁸ Blake KV, Zaccaria C, Domergue F, La Mache E, Saint-Raymond A, Hidalgo-Simon A. Comparison between paediatric and adult suspected adverse drug reactions reported to the European medicines agency: implications for pharmacovigilance. Paediatr Drugs. 2014;16(4):309-319. ¹⁹ Screening for adverse reactions in EudraVigilance; http://www.ema.europa.eu. - 376 groups can be essential to yield additional evidence to gain understanding of the risk and/or the risk - 377 groups. - 378 Considering that the nature and/or severity of adverse reactions in paediatric patients may depend on - 379 organ maturation stage, any signal detection methods should focus not only on the paediatric - population as a whole, but also on specific paediatric subpopulations. - 381 In case of medicinal products with low usage in the paediatric population, early signal detection can - prove more challenging. A different, more effective approach may be needed, for example using real- - 383 life data from patients' records or disease databases and active surveillance systems. Clinical specialist - networks and paediatric clinical trial networks may be a useful resource in this context. # P.IV.B.6. Safety communication - For safety communication about paediatric medicines, the general guidance in GVP Module XV on - 387 safety communication and GVP Module XVI on risk minimisation measures (RMM) should be followed, - 388 together with the considerations in this Section. - 389 It should be considered that children and adolescents are becoming increasingly involved in medical - 390 decision-making process and, as they are reaching adulthood, they want to be involved in making their - own health choices. With the increasing use of the internet, young people tend to independently seek - 392 health information. Children above 12 years of age usually take their chronic medicine independently, - 393 and even younger children may learn to do so. Adolescents can and want to be informed about - medicines in a way similar to adults, while younger children can be approached with information in an - adapted style that takes into account their information and capability of processing complex messages - 396 avoiding a paternalistic style. - 397 Safety communication and communication-based RMM should include targeting specific audiences, - 398 (e.g. paediatricians, parents/carers or legal representatives, and the paediatric population, as - 399 relevant), and aim at gaining their active participation in risk minimisation and informed therapeutic - 400 choice, involving the child as appropriate to their age. - 401 In order to convey information specifically of interest to the paediatric population, marketing - 402 authorisation holders and competent authorities are encouraged to address the following if evidence is - 403 available: - interference of the effects of the medicinal product with school and sports performance; - interactions with alcohol, nicotine and other pharmacologically active substances; - risks of diversion of the medicine to friends. - 407 Younger people have different media preferences and may be more effectively reached by information - 408 and educational tools like infographics, comics, video clips and social media channels. This should be - 409 considered in the preparation of additional RMM. - In some situations, educational materials for additional RMM targeted to parents/carers should be - 411 considered, e.g. when advice on correct administration of a medicine is particularly important or to - 412 alert on a risk of diversion and/or misuse. - 413 Safety communication and, when necessary, educational materials addressed to healthcare - 414 professionals should aid discussion on certain risks with children and their parents/carers or legal - 415 representatives. Where applicable, the advice needs to address common sensitivities and concerns, - 416 such as the impact of the medicinal product on growth and development, cognitive and - 417 sexual/reproductive functions, and potential long-term effects. # **P.IV.C. Operation of the EU network** # 419 P.IV.C.1. Roles and responsibilities #### 420 P.IV.C.1.1. Marketing authorisation holder and applicant in the EU - 421 The marketing authorisation holder or applicant in the EU has the legal obligation to conduct - 422 pharmacovigilance in accordance with the requirements set up in Directive 2001/83/EC and Regulation - 423 EC no 726/2004 and should address the specific aspects relevant to the paediatric population (see - 424 P.IV.A.1.) in accordance with the guidance provided in P.IV.B.. The guidance in P.IV.C.1., should be - 425 followed for addressing paediatric-specific aspects when operating in the EU. ## 426 P.IV.B.6.1.1. Risk management plan (RMP) - Further to the guidance in P.IV.B.1., the following should be considered: - When agreeing a paediatric investigation plan (PIP) (see P.IV.C.2.3.), the Paediatric Committee - 429 (PDCO) (see P.IV.C.2.1.) may identify, in the PDCO opinion, potential risks for the paediatric (sub-) - population(s), in particular with regard to long-term efficacy and/or safety. PRAC will consider at the - 431 moment of the marketing authorisation in a paediatric indication whether the available clinical and - 432 non-clinical evidence supports their inclusion as important potential or identified risks, or missing - 433 information in the RMP. - The PDCO might also waive the requirement of paediatric development (Article 11 of the Paediatric - Regulation) on the grounds that the specific medicinal product is likely to be ineffective or unsafe of - 436 the paediatric population [Article 11(1)(a) of the Paediatric Regulation]. Once the clinical programme - 437 has been completed in adults the applicability of such grounds will be confirmed by PRAC and CHMP at - 438 the time of MA for potential inclusion of adequate information on paediatric subjects in the summary of - 439 product characteristics (SmPC) as well as in the RMP. This aims at setting-up appropriate risk - 440 minimisation measures should there be a potential paediatric use. # 441 P.IV.B.6.1.2. Periodic safety update report (PSUR) - Further to the guidance in P.IV.B.3., the following should be considered: - 443 Significant findings arising from paediatric clinical trials during the PSUR reporting period should be - 444 included in the PSUR, especially when these clinical trials have included safety objectives as part of the - agreed PIP opinion which is not yet completed, facilitating cross-linking of information and procedures - in the management of the medicinal product life-cycle. - When the PSUR submission is due before the paediatric development is completed, as agreed in a PIP, - 448 all information related to the deferred clinical and non-clinical studies should be adequately presented. - Where it is considered beneficial to gather further insight on widened use of a medicine in the - 450 paediatric population, this may lead to a requirement for a higher frequency of PSUR submissions as - 451 required by means in the List of European Union Reference Dates²⁰ (see GVP Module VII). # P.IV.B.6.1.3. Post-authorisation safety study (PASS) 453 Further to the guidance in P.IV.B.4., the following should be considered: ²⁰ www.ema.europa.eu - 454 In the case of development of medicines to treat diseases which occur rarely in paediatric patients and - 455 for which paediatric data are lacking or very limited, long term follow-up and maintenance of registries - 456 to document the long term outcome should be considered by the marketing authorisation holder(MAH). - 457 Finally, the clinical study program to be conducted in the paediatric population following initial - 458 marketing authorisation (MA) in adults (deferred paediatric clinical studies as described in the PIP - 459 opinion) should be reviewed at time of initial marketing authorisation application. This is important - because specific safety objectives included in the agreed clinical trial can consequently be considered 460 - for inclusion in the RMP (part II, modules SVII and SVIII). 461 - 462 The consultation of specialist networks (e.g. European Network of Centres for Pharmacoepidemiology - and Pharmacovigilance [ENCePP]²¹) and where appropriate, paediatric clinical trial networks (e.g. Enpr-463 - EMA²²) could be helpful to address specific aspects related to design and conduct of PASS in 464 - 465 paediatrics. 478 486 # P.IV.B.6.2. European Medicines Agency - 467 For the purpose of safe and effective use of medicinal products authorised for or used by the paediatric - 468 population outside the terms of the marketing authorisation the Pharmacovigilance Risk Assessment - 469 Committee (PRAC) (see GVP Module I) and the Paediatric Committee (PDCO) work together. #### 470 P.IV.B.6.2.1. The Paediatric Committee (PDCO) - 471 The Paediatric Committee (PDCO) supports the development of such medicines in the European Union - 472 and its responsibility is to assess the content of paediatric investigation plans (PIPs), which determine - 473 the studies that must be carried out in the paediatric population when developing a medicine. This - 474 includes assessing applications for a full or partial waiver and for deferrals. - 475 The PDCO composition includes members with expertise in pharmacovigilance to meet the specific - 476 challenges of collecting safety data in the paediatric population, including data on possible long-term - effects. The Mandate and Rules of Procedure of the PDCO are published on the Agency's website²³. 477 #### P.IV.B.6.2.2. Interaction between the PDCO and the PRAC - 479 While the regulatory role and competences of the PRAC and the PDCO remain clearly separated, a - 480 scientific dialogue and coordination in the respective procedure is expected. The PDCO and the PRAC - 481 proactively exchange of information and provide each other reciprocal advice. - 482 The scope of such interaction focuses on the promotion of early development of risk management - 483 strategies, understanding impact of emerging safety issues on paediatric development, gaining insight - 484 on paediatric needs and ensuring in general that, when needed, pharmacovigilance mechanisms are - 485 adapted to meet the specific challenges of collecting safety data in the paediatric population. #### P.IV.B.6.2.3. Paediatric investigation plan in the EU (PIP) - 487 A PIP is a development plan aimed at ensuring that the necessary data are obtained through studies in - 488 the paediatric population, to support the authorisation of a medicine with a paediatric indication. A PIP - 489 might include for example, interventional and non-interventional studies, non-clinical studies, http://www.ema.europa.eu. ²¹ European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP): http://www.encepp.eu/. ²² European Network of Paediatric Research at the European Medicines Agency (Enpr-EMA): http://www.ema.europa.eu/ema/index.jsp?curl=pages/partners and networks/general/general content 000303.jsp. - extrapolation studies, modelling and simulation studies, development of specific paediatric pharmaceutical forms and formulations. - 492 All applications for marketing authorisation for new medicines in the EU have to include the results of - studies as described in an agreed PIP, unless the medicine is exempt because of a deferral or waiver. - This requirement also applies when a marketing-authorisation holder wants to add a new indication, - 495 pharmaceutical form or route of administration for a medicine that is already authorised and covered - 496 by intellectual property rights. # P.IV.C.2. Safety communication in the EU - 498 Further to the guidance in P.IV.B.5., children and their families in the EU, through the established - 499 Young Person Advisory Groups (YPAG) can be consulted for the preparation of safety communication - and educational materials for additional RMMs. To this extent it is important to emphasise the activities - of the EnprEMA Working Group on Young Persons Advisory Groups which is currently working on - resources for the EMA and marketing authorisation holders in the EU.